原题链接在这里:https://leetcode.com/problems/unique-paths-ii/
题目:
Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1
and 0
respectively in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[ [0,0,0], [0,1,0], [0,0,0] ]
The total number of unique paths is 2
.
Note: m and n will be at most 100.
题解:
是Unique Paths的进阶版题目。思路与Unique Paths相似, 加了障碍物.
DP的更新当前点方式有所不同, 若是此处有障碍物. dp[i][j]里这一点就是0, 若此处没有障碍物, dp[i][j]是这一点就同行上一列和同列上一行的和.
Note:初始化是点dp[0][0].
Time Complexity: O(m*n). Space: O(m*n).
AC Java:
1 public class Solution { 2 public int uniquePathsWithObstacles(int[][] obstacleGrid) { 3 if(obstacleGrid == null || obstacleGrid.length == 0 || obstacleGrid[0].length == 0){ 4 return 0; 5 } 6 int m = obstacleGrid.length; 7 int n = obstacleGrid[0].length; 8 9 int [][] dp = new int[m][n]; 10 dp[0][0] = obstacleGrid[0][0] == 1 ? 0 : 1; 11 12 for(int i = 1; i){ 13 dp[i][0] = obstacleGrid[i][0] == 1 ? 0 : dp[i-1][0]; 14 } 15 16 for(int j = 1; j ){ 17 dp[0][j] = obstacleGrid[0][j] == 1 ? 0 : dp[0][j-1]; 18 } 19 20 for(int i = 1; i ){ 21 for(int j = 1; j ){ 22 dp[i][j] = obstacleGrid[i][j] == 1 ? 0 : dp[i-1][j] + dp[i][j-1]; 23 } 24 } 25 return dp[m-1][n-1]; 26 } 27 }
对应的本题也有像Unique Paths一般的降维存储历史信息的方法.
Note:更新时这里j是从0开始与Unique Paths不同,因为首列上有obstacle时需要更新dp[j] = dp[j]. 就是上一行的首列值.
Time Complexity: O(m*n). Space: O(n).
AC Java:
1 class Solution { 2 public int uniquePathsWithObstacles(int[][] obstacleGrid) { 3 if(obstacleGrid == null || obstacleGrid.length == 0 || obstacleGrid[0].length == 0){ 4 return 0; 5 } 6 7 int m = obstacleGrid.length; 8 int n = obstacleGrid[0].length; 9 10 int [] dp = new int[n]; 11 dp[0] = obstacleGrid[0][0] == 1 ? 0 : 1; 12 13 for(int j = 1; j){ 14 dp[j] = obstacleGrid[0][j] == 1 ? 0 : dp[j-1]; 15 } 16 17 for(int i = 1; i ){ 18 for(int j = 0; j ){ 19 if(j == 0){ 20 dp[j] = obstacleGrid[i][j] == 1 ? 0 : dp[j]; 21 }else{ 22 dp[j] = obstacleGrid[i][j] == 1 ? 0 : dp[j] + dp[j-1]; 23 } 24 } 25 } 26 return dp[n-1]; 27 } 28 }