HDU-4569 Special equations (数学)

Special equations

http://acm.hdu.edu.cn/showproblem.php?pid=4569

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Special Judge

Problem Description
  Let f(x) = a nx n +...+ a 1x +a 0, in which a i (0 <= i <= n) are all known integers. We call f(x) 0 (mod m) congruence equation. If m is a composite, we can factor m into powers of primes and solve every such single equation after which we merge them using the Chinese Reminder Theorem. In this problem, you are asked to solve a much simpler version of such equations, with m to be prime's square.
 

Input
  The first line is the number of equations T, T<=50.
  Then comes T lines, each line starts with an integer deg (1<=deg<=4), meaning that f(x)'s degree is deg. Then follows deg integers, representing a n to a 0 (0 < abs(a n) <= 100; abs(a i) <= 10000 when deg >= 3, otherwise abs(a i) <= 100000000, i   Remember, your task is to solve f(x) 0 (mod pri*pri)
 

Output
  For each equation f(x) 0 (mod pri*pri), first output the case number, then output anyone of x if there are many x fitting the equation, else output "No solution!"
 

Sample Input
 
   
4 2 1 1 -5 7 1 5 -2995 9929 2 1 -96255532 8930 9811 4 14 5458 7754 4946 -2210 9601
 

Sample Output
 
   
Case #1: No solution! Case #2: 599 Case #3: 96255626 Case #4: No solution!

看到Special Judge和中国剩余定理就有点怕,直接题解了...发现这对数学好的人来说又是一道简单题

题目只求任意一个x使f(x)%(pri*pri)=0,满足这个的必要条件是f(x)%(pri)=0,所以先在0~pri中枚举x,若找不到符合条件的则无解,找到则令x+=pri再次在x~pri*pri中枚举x,若找不到符合条件的则无解,找到则为答案。

#include 
#include 

using namespace std;

long long n,a[5],pri,ppri,x;

long long f(long long num) {
    long long fx=0,t=1;
    for(int i=0;i<=n;++i) {
        fx+=a[i]*t;
        t*=num;
    }
    return fx;
}

int main() {
    int T,kase=0;
    scanf("%d",&T);
    while(kase=0;--i)
            scanf("%I64d",a+i);
        scanf("%I64d",&pri);
        printf("Case #%d: ",++kase);
        x=0;
        while(x=ppri)
                printf("No solution!\n");
            else
                printf("%I64d\n",x);
        }
    }
    return 0;
}


你可能感兴趣的:(HDU,其他)