POJ—3259
While exploring his many farms, Farmer John has discovered a number of amazing wormholes. A wormhole is very peculiar because it is a one-way path that delivers you to its destination at a time that is BEFORE you entered the wormhole! Each of FJ’s farms comprises N (1 ≤ N ≤ 500) fields conveniently numbered 1…N, M (1 ≤ M ≤ 2500) paths, and W (1 ≤ W ≤ 200) wormholes.
As FJ is an avid time-traveling fan, he wants to do the following: start at some field, travel through some paths and wormholes, and return to the starting field a time before his initial departure. Perhaps he will be able to meet himself ? .
To help FJ find out whether this is possible or not, he will supply you with complete maps to F (1 ≤ F ≤ 5) of his farms. No paths will take longer than 10,000 seconds to travel and no wormhole can bring FJ back in time by more than 10,000 seconds.
Input
Line 1: A single integer, F. F farm descriptions follow.
Line 1 of each farm: Three space-separated integers respectively: N, M, and W
Lines 2… M+1 of each farm: Three space-separated numbers ( S, E, T) that describe, respectively: a bidirectional path between S and E that requires T seconds to traverse. Two fields might be connected by more than one path.
Lines M+2… M+ W+1 of each farm: Three space-separated numbers ( S, E, T) that describe, respectively: A one way path from S to E that also moves the traveler back T seconds.
Output
Lines 1… F: For each farm, output “YES” if FJ can achieve his goal, otherwise output “NO” (do not include the quotes).
Sample Input
2
3 3 1
1 2 2
1 3 4
2 3 1
3 1 3
3 2 1
1 2 3
2 3 4
3 1 8
Sample Output
NO
YES
Hint
For farm 1, FJ cannot travel back in time.
For farm 2, FJ could travel back in time by the cycle 1->2->3->1, arriving back at his starting location 1 second before he leaves. He could start from anywhere on the cycle to accomplish this.
t译文:农夫约翰在探索他的许多农场,发现了一些惊人的虫洞。虫洞是很奇特的,因为它是一个单向通道,可让你进入虫洞的前达到目的地!他的N(1≤N≤500)个农场被编号为1…N,之间有M(1≤M≤2500)条路径,W(1≤W≤200)个虫洞。作为一个狂热的时间旅行FJ的爱好者,他要做到以下几点:开始在一个区域,通过一些路径和虫洞旅行,他要回到最开时出发的那个区域出发前的时间。也许他就能遇到自己了:)。为了帮助FJ找出这是否是可以或不可以,他会为你提供F个农场的完整的映射到(1≤F≤5)。所有的路径所花时间都不大于10000秒,所有的虫洞都不大于万秒的时间回溯。
输入
第1行:一个整数F表示接下来会有F个农场说明。
每个农场第一行:分别是三个空格隔开的整数:N,M和W
第2行到M+1行:三个空格分开的数字(S,E,T)描述,分别为:需要T秒走过S和E之间的双向路径。两个区域可能由一个以上的路径来连接。
第M +2到M+ W+1行:三个空格分开的数字(S,E,T)描述虫洞,描述单向路径,S到E且回溯T秒。
输出
F行,每行代表一个农场
每个农场单独的一行,” YES”表示能满足要求,”NO”表示不能满足要求。
NO
YES
题意是问是否能通过虫洞回到过去;
虫洞是一条单向路,不但会把你传送到目的地,而且时间会倒退Ts。
我们把虫洞看成是一条负权路,问题就转化成求一个图中是否存在负权回路
下面给出三种算法的代码
floyd
#include
#include
#include
#include
using namespace std;
int map[505][505],n,m,k,num=0;
int floyd()
{
int i,j,k,f=0;
for(k=1;k<=n;k++)
for(i=1;i<=n;i++){
for(j=1;j<=n;j++)
{
int t=map[i][k]+map[k][j];
if(map[i][j]>t)map[i][j]=t;
/*map[i][j]=min(map[i][j],map[i][k]+map[k][j]);*/ //注意这里,用错了会超时!!!!不用min就跑了1688ms,,,,
}
if(map[i][i]<0)return 1;
}
return f;
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
int i,j,a,b,c;
scanf("%d%d%d",&n,&m,&k);
memset(map,0x3f3f3f3f,sizeof(map));
for(i=1;i<=n;i++)map[i][i]=0;
for(i=1;i<=m;i++)
{
scanf("%d%d%d",&a,&b,&c);
if(c<map[a][b])map[a][b]=map[b][a]=c;
}
for(i=1;i<=k;i++)
{
scanf("%d%d%d",&a,&b,&c);
map[a][b]=-c;
}
num++;
int f=floyd();
if(!f)printf("NO\n");
else printf("YES\n");
}
return 0;
}
BellmanFord:
#include
#include
#include
#include
#include
#include
#include
using namespace std;
#define N 5210
#define INF 0xfffffff
int cnt, dist[N], Head[N];
int n, m, w;
struct Edge
{
int u, v, w, next;
}e[N];
void Add(int u, int v, int w)
{
e[cnt].u = u;
e[cnt].v = v;
e[cnt].w = w;
e[cnt].next = Head[u];
Head[u] = cnt++;
}
bool BellmanFord()
{
dist[1] = 0;
for(int i=0; i<n; i++)
{
for(int j=0; j<cnt; j++)
{
if(dist[e[j].v] > dist[e[j].u]+e[j].w)
dist[e[j].v] = dist[e[j].u]+e[j].w;
}
}
for(int i=0; i<cnt; i++)
{
if(dist[e[i].v] > dist[e[i].u]+e[i].w)
return 0;
}
return 1;
}
int main()
{
int T, a, b, c;
scanf("%d", &T);
while(T--)
{
scanf("%d%d%d", &n, &m, &w);
cnt = 0;
memset(Head, -1, sizeof(Head));
for(int i=1; i<=n; i++)
dist[i] = INF;
for(int i=1; i<=m; i++)
{
scanf("%d%d%d", &a, &b, &c);
Add(a, b, c);
Add(b, a, c);
}
for(int i=1; i<=w; i++)
{
scanf("%d%d%d", &a, &b, &c);
Add(a, b, -c);
}
if( !BellmanFord() )
printf("YES\n");
else
printf("NO\n");
}
return 0;
}
spfa:
#include
#include
#include
#include
#include
#include
#include
using namespace std;
#define N 5210
#define INF 0xfffffff
int cnt, dist[N], Head[N], num[N], vis[N];
int n, m, w;
struct Edge
{
int v, w, next;
}e[N];
void Add(int u, int v, int w)
{
e[cnt].v = v;
e[cnt].w = w;
e[cnt].next = Head[u];
Head[u] = cnt++;
}
bool spfa()///spfa模板;
{
memset(vis, 0, sizeof(vis));
memset(num, 0, sizeof(num));
queue<int>Q;
vis[1] = 1;
dist[1] = 0;
Q.push(1);
num[1]++;
while(Q.size())
{
int p=Q.front();
Q.pop();
vis[p] = 0;
for(int i=Head[p]; i!=-1; i=e[i].next)
{
int q = e[i].v;
if(dist[q] > dist[p] + e[i].w)
{
dist[q] = dist[p] + e[i].w;
if(!vis[q])
{
vis[q] = 1;
Q.push(q);
num[q] ++;
if(num[q]>n)
return true;
}
}
}
}
return false;
}
int main()
{
int T, a, b, c;
scanf("%d", &T);
while(T--)
{
scanf("%d%d%d", &n, &m, &w);
cnt = 0;
memset(Head, -1, sizeof(Head));
for(int i=1; i<=n; i++)
dist[i] = INF;
for(int i=1; i<=m; i++)
{
scanf("%d%d%d", &a, &b, &c);
Add(a, b, c);
Add(b, a, c);
}
for(int i=1; i<=w; i++)
{
scanf("%d%d%d", &a, &b, &c);
Add(a, b, -c);
}
if( spfa() )///存在负环;
printf("YES\n");
else
printf("NO\n");
}
return 0;
}