Givennnon-negative integers representing an elevation map where the width of each bar is 1, compute how much water it is able to trap after raining.
For example,
Given[0,1,0,2,1,0,1,3,2,1,2,1]
, return6
.
The above elevation map is represented by array [0,1,0,2,1,0,1,3,2,1,2,1]. In this case, 6 units of rain water (blue section) are being trapped.Thanks Marcosfor contributing this image!
给定n个非负整数,代表一个柱状图,每一个柱子的宽度为1,计算下雨之后柱状图能装多少水?
例如:
[0,1,0,2,1,0,1,3,2,1,2,1] 返回 6
上述柱状图是由数组表示[0,1,0,2,1,0,1,3,2,1,2,1]。在这种情况下,6个单位的雨水(蓝色部分)被装。
对于每个柱子,找到其左右两边最高的柱子,该柱子能容纳的面积就是 min(leftMostHeight,rightMostHeight) - height。所以,
1. 从左往右扫描一遍,对于每个柱子,求取左边最大值;
2. 从右往左扫描一遍,对于每个柱子,求最大右值;
3. 再扫描一遍,把每个柱子的面积并累加。
也可以,
1. 扫描一遍,找到最高的柱子,这个柱子将数组分为两半;
2. 处理左边一半;
3. 处理右边一半。
/*********************************
* 日期:2014-01-20
* 作者:SJF0115
* 题号: Trapping Rain Water
* 来源:http://oj.leetcode.com/problems/trapping-rain-water/
* 结果:AC
* 来源:LeetCode
* 总结:
**********************************/
#include
#include
#include
using namespace std;
class Solution {
public:
int trap(int A[], int n) {
if(A == NULL || n < 1)return 0;
int i;
int* leftMostHeight = (int*)malloc(sizeof(int)*n);
int* rightMostHeight = (int*)malloc(sizeof(int)*n);
int maxHeight = 0;
for(i = 0; i < n;i++){
leftMostHeight[i] = maxHeight;
if(maxHeight < A[i]){
maxHeight = A[i];
}
}
maxHeight = 0;
for(i = n-1;i >= 0;i--){
rightMostHeight[i] = maxHeight;
if(maxHeight < A[i]){
maxHeight = A[i];
}
}
int water = 0;
for(i =0; i < n; i++){
int curWater = min(leftMostHeight[i],rightMostHeight[i]) - A[i];
if(curWater > 0){
water += curWater;
}
}
return water;
}
};
int main() {
Solution solution;
int result;
int A[] = {0,1,0,2,1,0,1,3,2,1,2,1};
result = solution.trap(A,12);
cout<
class Solution {
public:
int trap(int A[], int n) {
int *max_left = new int[n]();
int *max_right = new int[n]();
for (int i = 1; i < n; i++) {
max_left[i] = max(max_left[i - 1], A[i - 1]);
max_right[n - 1 - i] = max(max_right[n - i], A[n - i]);
}
int sum = 0;
for (int i = 0; i < n; i++) {
int height = min(max_left[i], max_right[i]);
if (height > A[i]) {
sum += height - A[i];
}
}
delete[] max_left;
delete[] max_right;
return sum;
}
};
class Solution {
public:
//时间复杂度 O(n),空间复杂度 O(1)
int trap(int A[], int n) {
// 最高的柱子,将数组分为两半
int max = 0;
for (int i = 0; i < n; i++){
if (A[i] > A[max]) max = i;
}
int water = 0;
for (int i = 0, leftMaxHeight = 0; i < max; i++){
if (A[i] > leftMaxHeight){
leftMaxHeight = A[i];
}
else {
water += leftMaxHeight - A[i];
}
}
for (int i = n - 1, rightMaxHeight = 0; i > max; i--){
if (A[i] > rightMaxHeight){
rightMaxHeight = A[i];
}
else{
water += rightMaxHeight - A[i];
}
}
return water;
}
};
//第4种解法,用一个栈辅助,小于栈顶的元素压入,大于等于栈顶就把栈里所有小于或等于当
//前值的元素全部出栈处理掉。
// LeetCode, Trapping Rain Water
// 用一个栈辅助,小于栈顶的元素压入,大于等于栈顶就把栈里所有小于或
// 等于当前值的元素全部出栈处理掉,计算面积,最后把当前元素入栈
// 时间复杂度 O(n),空间复杂度 O(n)
class Solution {
public:
int trap(int a[], int n) {
stack> s;
int water = 0;
for (int i = 0; i < n; ++i) {
int height = 0;
// 将栈里比当前元素矮或等高的元素全部处理掉
while (!s.empty()) {
int bar = s.top().first;
int pos = s.top().second;
// bar, height, a[i] 三者夹成的凹陷
water += (min(bar, a[i]) - height) * (i - pos - 1);
height = bar;
if (a[i] < bar) // 碰到了比当前元素高的,跳出循环
break;
else
s.pop(); // 弹出栈顶,因为该元素处理完了,不再需要了
}
s.push(make_pair(a[i], i));
}
return water;
}
};
类似题目:
庞果网之寻找直方图中面积最大的矩形
[LeetCode]11.Container With Most Water