动态规划: 当前店可能被偷也可能没被偷,但是我始终考虑当前情况下的最优情况。
m表示动态规划数组,nums.length*2, 每个店被偷或没被偷两种情况:
- 被偷,那要选前一家没被偷的情况 m[i][1]=m[i-1][0]+nums[i];
- 没被偷,上一家可被偷也可能没被偷,选能偷到的最多钱m[i][0]=max(m[i-1][0],m[i-1][1]);
int rob(vector& nums) {
if(nums.size()==0)
return 0;
vector >m(nums.size(),vector (2));
m[0][0]=0;
m[0][1]=nums[0];
int i=1;
for(i=1;i
动态规划:
what?
基于一个或多个递推公式及一个或多个初始状态。当前子问题的解将由上一次子问题的解推出。首先,我们要找到某个状态的最优解,然后根据此状态的解,推出下一个状态的最优解。
“状态”用来描述该问题的子问题的解。
如果我们有面值为1元、3元和5元的硬币若干枚,如何用最少的硬币凑够11元?(表面上这道题可以用贪心算法,但贪心算法无法保证可以求出解,比如1元换成2元的时候)
首先我们思考一个问题,如何用最少的硬币凑够i元(i<11)?为什么要这么问呢? 两个原因:1.当我们遇到一个大问题时,总是习惯把问题的规模变小,这样便于分析讨论。 2.这个规模变小后的问题和原来的问题是同质的,除了规模变小,其它的都是一样的, 本质上它还是同一个问题(规模变小后的问题其实是原问题的子问题)。
首先我们思考一个问题,如何用最少的硬币凑够i元(i<11)?为什么要这么问呢? 两个原因:1.当我们遇到一个大问题时,总是习惯把问题的规模变小,这样便于分析讨论。 2.这个规模变小后的问题和原来的问题是同质的,除了规模变小,其它的都是一样的, 本质上它还是同一个问题(规模变小后的问题其实是原问题的子问题)。
好了,让我们从最小的i开始吧。当i=0,即我们需要多少个硬币来凑够0元。 由于1,3,5都大于0,即没有比0小的币值,因此凑够0元我们最少需要0个硬币。 (这个分析很傻是不是?别着急,这个思路有利于我们理清动态规划究竟在做些什么。) 这时候我们发现用一个标记来表示这句“凑够0元我们最少需要0个硬币。”会比较方便, 如果一直用纯文字来表述,不出一会儿你就会觉得很绕了。那么, 我们用d(i)=j来表示凑够i元最少需要j个硬币。于是我们已经得到了d(0)=0, 表示凑够0元最小需要0个硬币。当i=1时,只有面值为1元的硬币可用, 因此我们拿起一个面值为1的硬币,接下来只需要凑够0元即可,而这个是已经知道答案的, 即d(0)=0。所以,d(1)=d(1-1)+1=d(0)+1=0+1=1。当i=2时, 仍然只有面值为1的硬币可用,于是我拿起一个面值为1的硬币, 接下来我只需要再凑够2-1=1元即可(记得要用最小的硬币数量),而这个答案也已经知道了。 所以d(2)=d(2-1)+1=d(1)+1=1+1=2。一直到这里,你都可能会觉得,好无聊, 感觉像做小学生的题目似的。因为我们一直都只能操作面值为1的硬币!耐心点, 让我们看看i=3时的情况。当i=3时,我们能用的硬币就有两种了:1元的和3元的( 5元的仍然没用,因为你需要凑的数目是3元!5元太多了亲)。 既然能用的硬币有两种,我就有两种方案。如果我拿了一个1元的硬币,我的目标就变为了: 凑够3-1=2元需要的最少硬币数量。即d(3)=d(3-1)+1=d(2)+1=2+1=3。 这个方案说的是,我拿3个1元的硬币;第二种方案是我拿起一个3元的硬币, 我的目标就变成:凑够3-3=0元需要的最少硬币数量。即d(3)=d(3-3)+1=d(0)+1=0+1=1. 这个方案说的是,我拿1个3元的硬币。好了,这两种方案哪种更优呢? 记得我们可是要用最少的硬币数量来凑够3元的。所以, 选择d(3)=1,怎么来的呢?具体是这样得到的:d(3)=min{d(3-1)+1, d(3-3)+1}。
上文中d(i)表示凑够i元需要的最少硬币数量,我们将它定义为该问题的”状态”, 这个状态是怎么找出来的呢?我在另一篇文章动态规划之背包问题(一)中写过: 根据子问题定义状态。你找到子问题,状态也就浮出水面了。 最终我们要求解的问题,可以用这个状态来表示:d(11),即凑够11元最少需要多少个硬币。 那状态转移方程是什么呢?既然我们用d(i)表示状态,那么状态转移方程自然包含d(i), 上文中包含状态d(i)的方程是:d(3)=min{d(3-1)+1, d(3-3)+1}。没错, 它就是状态转移方程,描述状态之间是如何转移的。当然,我们要对它抽象一下,
d(i)=min{ d(i-vj)+1 },其中i-vj >=0,vj表示第j个硬币的面值;
怎么找到状态之间的转移方式呢?
一个序列有N个数:A[1],A[2],…,A[N],求出最长非降子序列的长度。 (讲DP基本都会讲到的一个问题LIS:longest increasing subsequence)
为了方便理解我们是如何找到状态转移方程的,我先把下面的例子提到前面来讲。 如果我们要求的这N个数的序列是:
5,3,4,8,6,7
根据上面找到的状态,我们可以得到:(下文的最长非降子序列都用LIS表示)
- 前1个数的LIS长度d(1)=1(序列:5)
- 前2个数的LIS长度d(2)=1(序列:3;3前面没有比3小的)
- 前3个数的LIS长度d(3)=2(序列:3,4;4前面有个比它小的3,所以d(3)=d(2)+1)
- 前4个数的LIS长度d(4)=3(序列:3,4,8;8前面比它小的有3个数,所以 d(4)=max{d(1),d(2),d(3)}+1=3)
OK,分析到这,我觉得状态转移方程已经很明显了,如果我们已经求出了d(1)到d(i-1), 那么d(i)可以用下面的状态转移方程得到:
d(i) = max{1, d(j)+1},其中j
用大白话解释就是,想要求d(i),就把i前面的各个子序列中, 最后一个数不大于A[i]的序列长度加1,然后取出最大的长度即为d(i)。 当然了,有可能i前面的各个子序列中最后一个数都大于A[i],那么d(i)=1, 即它自身成为一个长度为1的子序列。
#includeusing namespace std; int lis(int A[], int n){ int *d = new int[n]; int len = 1; for(int i=0; i i){ d[i] = 1; for(int j=0; jj) if(A[j]<=A[i] && d[j]+1>d[i]) d[i] = d[j] + 1; if(d[i]>len) len = d[i]; } delete[] d; return len; } int main(){ int A[] = { 5, 3, 4, 8, 6, 7 }; cout< 6)<<endl; return 0; }
平面上有N*M个格子,每个格子中放着一定数量的苹果。你从左上角的格子开始, 每一步只能向下走或是向右走,每次走到一个格子上就把格子里的苹果收集起来, 这样下去,你最多能收集到多少个苹果。
首先,我们要找到这个问题中的“状态”是什么?我们必须注意到的一点是, 到达一个格子的方式最多只有两种:从左边来的(除了第一列)和从上边来的(除了第一行)。 因此为了求出到达当前格子后最多能收集到多少个苹果, 我们就要先去考察那些能到达当前这个格子的格子,到达它们最多能收集到多少个苹果。 (是不是有点绕,但这句话的本质其实是DP的关键:欲求问题的解,先要去求子问题的解)
经过上面的分析,很容易可以得出问题的状态和状态转移方程。 状态S[i][j]表示我们走到(i, j)这个格子时,最多能收集到多少个苹果。那么, 状态转移方程如下:
S[i][j]=A[i][j] + max(S[i-1][j], if i>0 ; S[i][j-1], if j>0)
其中i代表行,j代表列,下标均从0开始;A[i][j]代表格子(i, j)处的苹果数量。
S[i][j]有两种计算方式:1.对于每一行,从左向右计算,然后从上到下逐行处理;2. 对于每一列,从上到下计算,然后从左向右逐列处理。 这样做的目的是为了在计算S[i][j]时,S[i-1][j]和S[i][j-1]都已经计算出来了。
伪代码如下:
你从结点1开始走,并且一开始的时候你身上带有M元钱。如果你经过结点i, 那么你就要花掉S[i]元(可以把这想象为收过路费)。如果你没有足够的钱, 就不能从那个结点经过。在这样的限制条件下,找到从结点1到结点N的最短路径。 或者输出该路径不存在。如果存在多条最短路径,那么输出花钱数量最少的那条。 限制:1 以下问题需要仔细的揣摩才能将其规约为可用DP解的问题。 问题:StarAdventure - SRM 208 Div 1: 给定一个M行N列的矩阵(M*N个格子),每个格子中放着一定数量的苹果。 你从左上角的格子开始,只能向下或向右走,目的地是右下角的格子。 你每走过一个格子,就把格子上的苹果都收集起来。然后你从右下角走回左上角的格子, 每次只能向左或是向上走,同样的,走过一个格子就把里面的苹果都收集起来。 最后,你再一次从左上角走到右下角,每过一个格子同样要收集起里面的苹果 (如果格子里的苹果数为0,就不用收集)。求你最多能收集到多少苹果。 注意:当你经过一个格子时,你要一次性把格子里的苹果都拿走。 限制条件:1 < N, M <= 50;每个格子里的苹果数量是0到1000(包含0和1000)。 如果我们只需要从左上角的格子走到右下角的格子一次,并且收集最大数量的苹果, 那么问题就退化为“中级”一节里的那个问题。将这里的问题规约为“中级”里的简单题, 这样一来会比较好解。让我们来分析一下这个问题,要如何规约或是修改才能用上DP。 首先,对于第二次从右下角走到左上角得出的这条路径, 我们可以将它视为从左上角走到右下角得出的路径,没有任何的差别。 (即从B走到A的最优路径和从A走到B的最优路径是一样的)通过这种方式, 我们得到了三条从顶走到底的路径。对于这一点的理解可以稍微减小问题的难度。 于是,我们可以将这3条路径记为左,中,右路径。对于两条相交路径(如下图): 在不影响结果的情况下,我们可以将它们视为两条不相交的路径: 这样一来,我们将得到左,中,右3条路径。此外,如果我们要得到最优解, 路径之间不能相交(除了左上角和右下角必然会相交的格子)。因此对于每一行y( 除了第一行和最后一行),三条路径对应的x坐标要满足:x1[y] < x2[y] < x3[y]。 经过这一步的分析,问题的DP解法就进一步地清晰了。让我们考虑行y, 对于每一个x1[y-1],x2[y-1]和x3[y-1],我们已经找到了能收集到最多苹果数量的路径。 根据它们,我们能求出行y的最优解。现在我们要做的就是找到从一行移动到下一行的方式。 令Max[i][j][k]表示到第y-1行为止收集到苹果的最大数量, 其中3条路径分别止于第i,j,k列。对于下一行y,对每个Max[i][j][k] 都加上格子(y,i),(y,j)和(y,k)内的苹果数量。因此,每一步我们都向下移动。 我们做了这一步移动之后,还要考虑到,一条路径是有可能向右移动的。 (对于每一个格子,我们有可能是从它上面向下移动到它, 也可能是从它左边向右移动到它)。为了保证3条路径互不相交, 我们首先要考虑左边的路径向右移动的情况,然后是中间,最后是右边的路径。 为了更好的理解,让我们来考虑左边的路径向右移动的情况,对于每一个可能的j,k对(j http://www.hawstein.com/posts/dp-novice-to-advanced.html 高级