杨辉三角定义如下:
1
/ \
1 1
/ \ / \
1 2 1
/ \ / \ / \
1 3 3 1
/ \ / \ / \ / \
1 4 6 4 1
/ \ / \ / \ / \ / \
1 5 10 10 5 1
把每一行看做一个list,试写一个generator,不断输出下一行的list:
期待输出:
[1]
[1, 1]
[1, 2, 1]
[1, 3, 3, 1]
[1, 4, 6, 4, 1]
[1, 5, 10, 10, 5, 1]
[1, 6, 15, 20, 15, 6, 1]
[1, 7, 21, 35, 35, 21, 7, 1]
[1, 8, 28, 56, 70, 56, 28, 8, 1]
[1, 9, 36, 84, 126, 126, 84, 36, 9, 1]
generator用法:
例子:打印10之内(不包括10)的数字的平方值
>>> g = (x * x for x in range(10))# 不包括10,也就是从0到9,一共10个数
>>> for n in g:
... print(n)
...
0
1
4
9
16
25
36
49
64
81
若要将一个函数改为generator,可以通过修改print为yield实现:
def fib(max):
n, a, b = 0, 0, 1
while n < max:
print(b)
a, b = b, a + b
n = n + 1
return 'done'
########################
def fib(max):
n, a, b = 0, 0, 1
while n < max:
yield b
a, b = b, a + b
n = n + 1
return 'done'
>>> f = fib(6)
>>> f
<generator object fib at 0x104feaaa0>
函数与generator的区别:函数是顺序执行,遇到return语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用next() 的时候执行,遇到yield语句返回,再次执行时从上次返回的yield语句处继续执行。
思路:将函数修改为generator,每行是一个list,可以用列表生成式实现。
# -*- coding: utf-8 -*-
def triangles():
L=[1]
while True:
yield L
newL = [ L[i]+L[i+1] for i in range(len(L)-1)]
L = newL
L.insert(0,1)
L.append(1)
测试代码为:
n = 0
results = []
for t in triangles():
results.append(t)
n = n + 1
if n == 10:
break
for t in results:
print(t)
if results == [
[1],
[1, 1],
[1, 2, 1],
[1, 3, 3, 1],
[1, 4, 6, 4, 1],
[1, 5, 10, 10, 5, 1],
[1, 6, 15, 20, 15, 6, 1],
[1, 7, 21, 35, 35, 21, 7, 1],
[1, 8, 28, 56, 70, 56, 28, 8, 1],
[1, 9, 36, 84, 126, 126, 84, 36, 9, 1]
]:
print('测试通过!')
else:
print('测试失败!')
输出结果为:
[1]
[1, 1]
[1, 2, 1]
[1, 3, 3, 1]
[1, 4, 6, 4, 1]
[1, 5, 10, 10, 5, 1]
[1, 6, 15, 20, 15, 6, 1]
[1, 7, 21, 35, 35, 21, 7, 1]
[1, 8, 28, 56, 70, 56, 28, 8, 1]
[1, 9, 36, 84, 126, 126, 84, 36, 9, 1]
测试通过!