力扣刷题系列——贪心思想

贪心思想常见算法题

以下内容为从GitHub中转载而来,仅供个人日后复习之用,GitHub仓库地址:https://github.com/CyC2018/CS-Notes。

贪心思想:保证每次操作都是局部最优的,并且最后得到的结果是全局最优的。

1.分配饼干

455. Assign Cookies (Easy)

假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。对每个孩子 i ,都有一个胃口值 gi ,这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干 j ,都有一个尺寸 sj 。如果 sj >= gi ,我们可以将这个饼干 j 分配给孩子 i ,这个孩子会得到满足。你的目标是尽可能满足越多数量的孩子,并输出这个最大数值。

注意:

你可以假设胃口值为正。
一个小朋友最多只能拥有一块饼干。

示例 1:

输入: [1,2,3], [1,1]

输出: 1

解释: 
你有三个孩子和两块小饼干,3个孩子的胃口值分别是:1,2,3。
虽然你有两块小饼干,由于他们的尺寸都是1,你只能让胃口值是1的孩子满足。
所以你应该输出1。
示例 2:

输入: [1,2], [1,2,3]

输出: 2

解释: 
你有两个孩子和三块小饼干,2个孩子的胃口值分别是1,2。
你拥有的饼干数量和尺寸都足以让所有孩子满足。
所以你应该输出2.

题目解析:每个孩子都有一个满足度 grid,每个饼干都有一个大小 size,只有饼干的大小大于等于一个孩子的满足度,该孩子才会获得满足。求解最多可以获得满足的孩子数量。

  1. 给一个孩子的饼干应当尽量小并且又能满足该孩子,这样大饼干才能拿来给满足度比较大的孩子。
  2. 因为满足度最小的孩子最容易得到满足,所以先满足满足度最小的孩子。

在以上的解法中,我们只在每次分配时饼干时选择一种看起来是当前最优的分配方法,但无法保证这种局部最优的分配方法最后能得到全局最优解。我们假设能得到全局最优解,并使用反证法进行证明,即假设存在一种比我们使用的贪心策略更优的最优策略。如果不存在这种最优策略,表示贪心策略就是最优策略,得到的解也就是全局最优解。

证明:假设在某次选择中,贪心策略选择给当前满足度最小的孩子分配第 m 个饼干,第 m 个饼干为可以满足该孩子的最小饼干。假设存在一种最优策略,可以给该孩子分配第 n 个饼干,并且 m < n。我们可以发现,经过这一轮分配,贪心策略分配后剩下的饼干一定有一个比最优策略来得大。因此在后续的分配中,贪心策略一定能满足更多的孩子。也就是说不存在比贪心策略更优的策略,即贪心策略就是最优策略。

 

力扣刷题系列——贪心思想_第1张图片

代码实现:

public int findContentChildren(int[] grid, int[] size) {
    if (grid == null || size == null) return 0;
    Arrays.sort(grid);
    Arrays.sort(size);
    int gi = 0, si = 0;
    while (gi < grid.length && si < size.length) {
        if (grid[gi] <= size[si]) {
            gi++;
        }
        si++;
    }
    return gi;
}

2.不重叠的区间个数

给定一个区间的集合,找到需要移除区间的最小数量,使剩余区间互不重叠。

注意:

可以认为区间的终点总是大于它的起点。
区间 [1,2] 和 [2,3] 的边界相互“接触”,但没有相互重叠。
示例 1:

输入: [ [1,2], [2,3], [3,4], [1,3] ]

输出: 1

解释: 移除 [1,3] 后,剩下的区间没有重叠。
示例 2:

输入: [ [1,2], [1,2], [1,2] ]

输出: 2

解释: 你需要移除两个 [1,2] 来使剩下的区间没有重叠。
示例 3:

输入: [ [1,2], [2,3] ]

输出: 0

解释: 你不需要移除任何区间,因为它们已经是无重叠的了。

题目描述:计算让一组区间不重叠所需要移除的区间个数。

先计算最多能组成的不重叠区间个数,然后用区间总个数减去不重叠区间的个数。

在每次选择中,区间的结尾最为重要,选择的区间结尾越小,留给后面的区间的空间越大,那么后面能够选择的区间个数也就越大。

按区间的结尾进行排序,每次选择结尾最小,并且和前一个区间不重叠的区间。

代码实现:

public int eraseOverlapIntervals(int[][] intervals) {
    if (intervals.length == 0) {
        return 0;
    }
    Arrays.sort(intervals, Comparator.comparingInt(o -> o[1]));
    int cnt = 1;
    int end = intervals[0][1];
    for (int i = 1; i < intervals.length; i++) {
        if (intervals[i][0] < end) {
            continue;
        }
        end = intervals[i][1];
        cnt++;
    }
    return intervals.length - cnt;
}
/**
使用 lambda 表示式创建 Comparator 会导致算法运行时间过长,如果注重运行时间,可以修改为普通创建 Comparator 语句:

Arrays.sort(intervals, new Comparator() {
    @Override
    public int compare(int[] o1, int[] o2) {
        return o1[1] - o2[1];
    }
});
*/

3.投飞镖刺破气球

在二维空间中有许多球形的气球。对于每个气球,提供的输入是水平方向上,气球直径的开始和结束坐标。由于它是水平的,所以y坐标并不重要,因此只要知道开始和结束的x坐标就足够了。开始坐标总是小于结束坐标。平面内最多存在104个气球。

一支弓箭可以沿着x轴从不同点完全垂直地射出。在坐标x处射出一支箭,若有一个气球的直径的开始和结束坐标为 xstart,xend, 且满足  xstart ≤ x ≤ xend,则该气球会被引爆。可以射出的弓箭的数量没有限制。 弓箭一旦被射出之后,可以无限地前进。我们想找到使得所有气球全部被引爆,所需的弓箭的最小数量。

Example:

输入:
[[10,16], [2,8], [1,6], [7,12]]

输出:
2

解释:
对于该样例,我们可以在x = 6(射爆[2,8],[1,6]两个气球)和 x = 11(射爆另外两个气球)。

题目描述:气球在一个水平数轴上摆放,可以重叠,飞镖垂直投向坐标轴,使得路径上的气球都被刺破。求解最小的投飞镖次数使所有气球都被刺破。

也是计算不重叠的区间个数,不过和 Non-overlapping Intervals 的区别在于,[1, 2] 和 [2, 3] 在本题中算是重叠区间。

代码实现:

public int findMinArrowShots(int[][] points) {
    if (points.length == 0) {
        return 0;
    }
    Arrays.sort(points, Comparator.comparingInt(o -> o[1]));
    int cnt = 1, end = points[0][1];
    for (int i = 1; i < points.length; i++) {
        if (points[i][0] <= end) {
            continue;
        }
        cnt++;
        end = points[i][1];
    }
    return cnt;
}

4.根据身高和序号重组队列

假设有打乱顺序的一群人站成一个队列。 每个人由一个整数对(h, k)表示,其中h是这个人的身高,k是排在这个人前面且身高大于或等于h的人数。 编写一个算法来重建这个队列。

注意:
总人数少于1100人。

示例

输入:
[[7,0], [4,4], [7,1], [5,0], [6,1], [5,2]]

输出:
[[5,0], [7,0], [5,2], [6,1], [4,4], [7,1]]

题目描述:一个学生用两个分量 (h, k) 描述,h 表示身高,k 表示排在前面的有 k 个学生的身高比他高或者和他一样高。

为了使插入操作不影响后续的操作,身高较高的学生应该先做插入操作,否则身高较小的学生原先正确插入的第 k 个位置可能会变成第 k+1 个位置。

身高 h 降序、个数 k 值升序,然后将某个学生插入队列的第 k 个位置中。

代码实现:

public int[][] reconstructQueue(int[][] people) {
    if (people == null || people.length == 0 || people[0].length == 0) {
        return new int[0][0];
    }
    Arrays.sort(people, (a, b) -> (a[0] == b[0] ? a[1] - b[1] : b[0] - a[0]));
    List queue = new ArrayList<>();
    for (int[] p : people) {
        queue.add(p[1], p);
    }
    return queue.toArray(new int[queue.size()][]);
}

5.买卖股票最大的收益

给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。

如果你最多只允许完成一笔交易(即买入和卖出一支股票一次),设计一个算法来计算你所能获取的最大利润。

注意:你不能在买入股票前卖出股票。

示例 1:

输入: [7,1,5,3,6,4]
输出: 5
解释: 在第 2 天(股票价格 = 1)的时候买入,在第 5 天(股票价格 = 6)的时候卖出,最大利润 = 6-1 = 5 。
     注意利润不能是 7-1 = 6, 因为卖出价格需要大于买入价格;同时,你不能在买入前卖出股票。
示例 2:

输入: [7,6,4,3,1]
输出: 0
解释: 在这种情况下, 没有交易完成, 所以最大利润为 0。

题目描述:一次股票交易包含买入和卖出,只进行一次交易,求最大收益。

只要记录前面的最小价格,将这个最小价格作为买入价格,然后将当前的价格作为售出价格,查看当前收益是不是最大收益。

代码实现:

public int maxProfit(int[] prices) {
    int n = prices.length;
    if (n == 0) return 0;
    int soFarMin = prices[0];
    int max = 0;
    for (int i = 1; i < n; i++) {
        if (soFarMin > prices[i]) soFarMin = prices[i];
        else max = Math.max(max, prices[i] - soFarMin);
    }
    return max;
}

6.买卖股票的最大收益 II

给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你可以尽可能地完成更多的交易(多次买卖一支股票)。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

示例 1:

输入: [7,1,5,3,6,4]
输出: 7
解释: 在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。
     随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6-3 = 3 。
示例 2:

输入: [1,2,3,4,5]
输出: 4
解释: 在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。
     注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。
     因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。
示例 3:

输入: [7,6,4,3,1]
输出: 0
解释: 在这种情况下, 没有交易完成, 所以最大利润为 0。

题目描述:可以进行多次交易,多次交易之间不能交叉进行,可以进行多次交易。

对于 [a, b, c, d],如果有 a <= b <= c <= d ,那么最大收益为 d - a。而 d - a = (d - c) + (c - b) + (b - a) ,因此当访问到一个 prices[i] 且 prices[i] - prices[i-1] > 0,那么就把 prices[i] - prices[i-1] 添加到收益中。

代码实现:

public int maxProfit(int[] prices) {
    int profit = 0;
    for (int i = 1; i < prices.length; i++) {
        if (prices[i] > prices[i - 1]) {
            profit += (prices[i] - prices[i - 1]);
        }
    }
    return profit;
}

7.种植花朵

假设你有一个很长的花坛,一部分地块种植了花,另一部分却没有。可是,花卉不能种植在相邻的地块上,它们会争夺水源,两者都会死去。

给定一个花坛(表示为一个数组包含0和1,其中0表示没种植花,1表示种植了花),和一个数 n 。能否在不打破种植规则的情况下种入 n 朵花?能则返回True,不能则返回False。

示例 1:

输入: flowerbed = [1,0,0,0,1], n = 1
输出: True
示例 2:

输入: flowerbed = [1,0,0,0,1], n = 2
输出: False

题目描述:flowerbed 数组中 1 表示已经种下了花朵。花朵之间至少需要一个单位的间隔,求解是否能种下 n 朵花。

代码实现:

public boolean canPlaceFlowers(int[] flowerbed, int n) {
    int len = flowerbed.length;
    int cnt = 0;
    for (int i = 0; i < len && cnt < n; i++) {
        if (flowerbed[i] == 1) {
            continue;
        }
        int pre = i == 0 ? 0 : flowerbed[i - 1];
        int next = i == len - 1 ? 0 : flowerbed[i + 1];
        if (pre == 0 && next == 0) {
            cnt++;
            flowerbed[i] = 1;
        }
    }
    return cnt >= n;
}

8.判断是否为子序列

给定字符串 s 和 t ,判断 s 是否为 t 的子序列。

你可以认为 s 和 t 中仅包含英文小写字母。字符串 t 可能会很长(长度 ~= 500,000),而 s 是个短字符串(长度 <=100)。

字符串的一个子序列是原始字符串删除一些(也可以不删除)字符而不改变剩余字符相对位置形成的新字符串。(例如,"ace"是"abcde"的一个子序列,而"aec"不是)。

示例 1:
s = "abc", t = "ahbgdc"

返回 true.

示例 2:
s = "axc", t = "ahbgdc"

返回 false.

代码实现:

public boolean isSubsequence(String s, String t) {
    int index = -1;
    for (char c : s.toCharArray()) {
        index = t.indexOf(c, index + 1);
        if (index == -1) {
            return false;
        }
    }
    return true;
}

9.修改一个数成为非递减数组

给你一个长度为 n 的整数数组,请你判断在 最多 改变 1 个元素的情况下,该数组能否变成一个非递减数列。

我们是这样定义一个非递减数列的: 对于数组中所有的 i (0 <= i <= n-2),总满足 nums[i] <= nums[i + 1]。

示例 1:

输入: nums = [4,2,3]
输出: true
解释: 你可以通过把第一个4变成1来使得它成为一个非递减数列。
示例 2:

输入: nums = [4,2,1]
输出: false
解释: 你不能在只改变一个元素的情况下将其变为非递减数列。

题目描述:判断一个数组是否能只修改一个数就成为非递减数组。

在出现 nums[i] < nums[i - 1] 时,需要考虑的是应该修改数组的哪个数,使得本次修改能使 i 之前的数组成为非递减数组,并且 不影响后续的操作 。优先考虑令 nums[i - 1] = nums[i],因为如果修改 nums[i] = nums[i - 1] 的话,那么 nums[i] 这个数会变大,就有可能比 nums[i + 1] 大,从而影响了后续操作。还有一个比较特别的情况就是 nums[i] < nums[i - 2],修改 nums[i - 1] = nums[i] 不能使数组成为非递减数组,只能修改 nums[i] = nums[i - 1]。

代码实现:

public boolean checkPossibility(int[] nums) {
    int cnt = 0;
    for (int i = 1; i < nums.length && cnt < 2; i++) {
        if (nums[i] >= nums[i - 1]) {
            continue;
        }
        cnt++;
        if (i - 2 >= 0 && nums[i - 2] > nums[i]) {
            nums[i] = nums[i - 1];
        } else {
            nums[i - 1] = nums[i];
        }
    }
    return cnt <= 1;
}

10.子数组最大的和

给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

示例:

输入: [-2,1,-3,4,-1,2,1,-5,4]
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。

代码实现:

public int maxSubArray(int[] nums) {
    if (nums == null || nums.length == 0) {
        return 0;
    }
    int preSum = nums[0];
    int maxSum = preSum;
    for (int i = 1; i < nums.length; i++) {
        preSum = preSum > 0 ? preSum + nums[i] : nums[i];
        maxSum = Math.max(maxSum, preSum);
    }
    return maxSum;
}

11.分隔字符串使同种字符出现在一起

字符串 S 由小写字母组成。我们要把这个字符串划分为尽可能多的片段,同一个字母只会出现在其中的一个片段。返回一个表示每个字符串片段的长度的列表。

示例 1:

输入:S = "ababcbacadefegdehijhklij"
输出:[9,7,8]
解释:
划分结果为 "ababcbaca", "defegde", "hijhklij"。
每个字母最多出现在一个片段中。
像 "ababcbacadefegde", "hijhklij" 的划分是错误的,因为划分的片段数较少。

代码实现:

public List partitionLabels(String S) {
    int[] lastIndexsOfChar = new int[26];
    for (int i = 0; i < S.length(); i++) {
        lastIndexsOfChar[char2Index(S.charAt(i))] = i;
    }
    List partitions = new ArrayList<>();
    int firstIndex = 0;
    while (firstIndex < S.length()) {
        int lastIndex = firstIndex;
        for (int i = firstIndex; i < S.length() && i <= lastIndex; i++) {
            int index = lastIndexsOfChar[char2Index(S.charAt(i))];
            if (index > lastIndex) {
                lastIndex = index;
            }
        }
        partitions.add(lastIndex - firstIndex + 1);
        firstIndex = lastIndex + 1;
    }
    return partitions;
}

private int char2Index(char c) {
    return c - 'a';
}

12.坏了的计算器

在显示着数字的坏计算器上,我们可以执行以下两种操作:

双倍(Double):将显示屏上的数字乘 2;
递减(Decrement):将显示屏上的数字减 1 。
最初,计算器显示数字 X。

返回显示数字 Y 所需的最小操作数。

示例 1:

输入:X = 2, Y = 3
输出:2
解释:先进行双倍运算,然后再进行递减运算 {2 -> 4 -> 3}.
示例 2:

输入:X = 5, Y = 8
输出:2
解释:先递减,再双倍 {5 -> 4 -> 8}.
示例 3:

输入:X = 3, Y = 10
输出:3
解释:先双倍,然后递减,再双倍 {3 -> 6 -> 5 -> 10}.
示例 4:

输入:X = 1024, Y = 1
输出:1023
解释:执行递减运算 1023 次

代码实现:

// 当Y = X时,返回0
// 当Y < X时,返回 X-Y
// 当Y > X且 Y为奇数时,我们可以得到当前最优序列中倒数第二个数为Y+1,递归求解到Y+1的最小操作次数。
// 当Y > X且 Y为偶数时, 我们可以得到当前最优序列中倒数第二个数为Y/2,递归求解到Y/2的最小操作次数。
class Solution {
    public int brokenCalc(int X, int Y) {
        if(X>=Y)
            return X-Y;
        else if(Y%2==0){
            return 1+brokenCalc(X,Y/2);
        }else{
            return 1+brokenCalc(X,Y+1);
        }
    }
}

 

你可能感兴趣的:(力扣刷题系列)