Dijkstra算法及其C++实现

Dijkstra算法及其C++实现

什么是最短路径问题

如果从图中某一顶点(称为源点)到达另一顶点(称为终点)的路径可能不止一条,如何找到一条路径使得沿此路径上各边上的权值总和达到最小。

单源最短路径问题是指对于给定的图 G = ( V , E ) G=(V, E) G=(V,E),求源点 v 0 v_0 v0到其它顶点 v t v_t vt的最短路径。

Dijkstra算法

Dijkstra算法用于计算一个节点到其他节点的最短路径。Dijkstra是一种按路径长度递增的顺序逐步产生最短路径的方法,是一种贪婪算法。

Dijkstra算法的核心思想是首先求出长度最短的一条最短路径,再参照它求出长度次短的一条最短路径,依次类推,直到从源点 v 0 v_0 v0到其它各顶点的最短路径全部求出为止。

具体来说:图中所有顶点分成两组,第一组是已确定最短路径的顶点,初始只包含一个源点,记为集合 S S S;第二组是尚未确定最短路径的顶点,记为集合 U U U

按最短路径长度递增的顺序逐个把 U U U中的顶点加到 S S S中去,同时动态更新 U U U集合中源点到各个顶点的最短距离,直至所有顶点都包括到 S S S中。

实现思路

  1. 初始时, S S S集合只包含起点 v 0 v_0 v0 U U U集合包含除 v 0 v_0 v0外的其他顶点 v t v_t vt,且 U U U中顶点的距离为起点 v 0 v_0 v0到该顶点的距离。( U U U中顶点 v t v_t vt的距离为 ( v 0 , v t ) (v_0, v_t) (v0,vt)的长度,如果 v 0 v_0 v0 v t v_t vt不相邻,则 v t v_t vt的最短距离为 ∞ \infty
  2. U U U中选出距离最短的顶点 v t ′ v_{t'} vt,并将顶点 v t ′ v_{t'} vt加入到 S S S中;同时,从 U U U中移除顶点 v t ′ v_{t'} vt
  3. 更新 U U U中各个顶点 v t v_t vt到起点 v 0 v_0 v0的距离以及最短路径中当前顶点的前驱顶点。之所以更新 U U U中顶点的距离以及前驱顶点是由于上一步中确定了 v t ′ v_{t'} vt是求出最短路径的顶点,从而可以利用 v t ′ v_{t'} vt来更新 U U U中其它顶点 v t v_t vt的距离,因为存在 ( v 0 , v t ) (v_0, v_t) (v0,vt)的距离可能大于 ( v 0 , v t ′ ) + ( v t ′ , v t ) (v_0, v_{t'}) + (v_{t'}, v_t) (v0,vt)+(vt,vt)距离的情况,从而也需要更新其前驱顶点
  4. 重复步骤(2)和(3),直到遍历完所有顶点

案例分析

Dijkstra算法及其C++实现_第1张图片

代码实现

使用了部分C++11特性,注释丰富,读起来应该不会太困难!

#include 
#include 
#include 
#include 
#include 

using namespace std;
using Matrix = vector>;                // 连接矩阵(使用嵌套的vector表示)
using SNodes = vector>;     // 已计算出最短路径的顶点集合S(类似一个动态数组)
using UNodes = list>;       // 未进行遍历的顶点集合U(使用list主要是方便元素删除操作)
using ENode = tuple;              // 每个节点包含(顶点编号,当前顶点到起始点最短距离,最短路径中当前顶点的上一个顶点)信息


/***
 * 从未遍历的U顶点集合中找到下一个离起始顶点距离最短的顶点
 * @param unvisitedNodes 未遍历的U顶点集合
 * 每个元素是(顶点编号,当前顶点到起始点最短距离,最短路径中当前顶点的上一个顶点)的tuple
 * @return 下一个离起始顶点距离最短的顶点
 */
ENode searchNearest(const UNodes &unvisitedNodes) {
    uint minDistance = UINT_MAX;
    ENode nearest;
    for (const auto &node: unvisitedNodes) {
        if (get<1>(node) <= minDistance) {
            minDistance = get<1>(node);
            nearest = node;
        }
    }
    return nearest;
}


/***
 * 迪克斯特拉算法的实现
 * @param graph 连接矩阵(使用嵌套的vector表示)
 * @param startNodeIndex 起始点编码(从0开始)
 * @return 返回一个vector,每个元素是到起始顶点的距离排列的包含(顶点编号,当前顶点到起始点最短距离,最短路径中当前顶点的上一个顶点)的tuple
 */
SNodes dijkstra(const Matrix &graph, uint startNodeIndex) {
    const uint numOfNodes = graph.size();   // 图中顶点的个数
    // S是已计算出最短路径的顶点的集合(顶点编号,当前顶点到起始点最短距离,最短路径中当前顶点的上一个顶点)
    SNodes visitedNodes;
    // U是未计算出最短路径的顶点的集合(其中的key为顶点编号,value为到起始顶点最短距离和最短路径中上一个节点编号组成的pair)
    UNodes unvisitedNodes;

    // 对S和U集合进行初始化,起始顶点的距离为0,其他顶点的距离为无穷大
    // 最短路径中当前顶点的上一个顶点初始化为起始顶点,后面会逐步进行修正
    for (auto i = 0; i < numOfNodes; ++i) {
        if (i == startNodeIndex) visitedNodes.emplace_back(i, 0, startNodeIndex);
        else unvisitedNodes.emplace_back(i, graph[startNodeIndex][i], startNodeIndex);
    }

    while (!unvisitedNodes.empty()) {
        // 从U中找到距离起始顶点距离最短的顶点,加入S,同时从U中删除
        auto nextNode = searchNearest(unvisitedNodes);
        unvisitedNodes.erase(find(unvisitedNodes.begin(), unvisitedNodes.end(), nextNode));
        visitedNodes.emplace_back(nextNode);
        // 更新U集合中各个顶点的最短距离以及最短路径中的上一个顶点
        for (auto &node: unvisitedNodes) {
            // 更新的判断依据就是起始顶点到当前顶点(nextNode)距离加上当前顶点到U集合中顶点的距离小于原来起始顶点到U集合中顶点的距离
            // 更新最短距离的时候同时需要更新最短路径中的上一个顶点为nextNode
            if (graph[get<0>(nextNode)][get<0>(node)] != UINT_MAX &&
                graph[get<0>(nextNode)][get<0>(node)] + get<1>(nextNode) < get<1>(node)) {
                get<1>(node) = graph[get<0>(nextNode)][get<0>(node)] + get<1>(nextNode);
                get<2>(node) = get<0>(nextNode);
            }
        }
    }

    return visitedNodes;
}


/***
 * 对使用迪克斯特拉算法求解的最短路径进行打印输出
 * @param paths vector表示的最短路径集合
 * 每个元素是到起始顶点的距离排列的包含(顶点编号,当前顶点到起始点最短距离,最短路径中当前顶点的上一个顶点)的tuple
 */
void print(const SNodes &paths) {
    stack tracks;  //从尾部出发,使用stack将每个顶点的最短路径中的前一个顶点入栈,然后出栈的顺序就是最短路径顺序
    // 第一个元素是起始点,从第二个元素进行打印输出
    for (auto it = ++paths.begin(); it != paths.end(); ++it) {
        // 打印头部信息
        printf("%c -> %c:\t Length: %d\t Paths: %c",
               char(get<0>(paths[0]) + 65),
               char(get<0>(*it) + 65),
               get<1>(*it),
               char(get<0>(paths[0]) + 65));
        auto pointer = *it;
        // 如果当前指针pointer指向的节点有中途节点(判断的条件是最短路径中的前一个节点不是起始点)
        while (get<2>(pointer) != get<0>(paths[0])) {
            tracks.push(get<0>(pointer));
            // Lambda表达式,使用find_if函数把当前顶点的前一个顶点从paths中找出来继续进行循环直到前一个节点就是起始点
            auto condition = [pointer](tuple x) { return get<0>(x) == get<2>(pointer); };
            pointer = *find_if(paths.begin(), paths.end(), condition);
        }
        tracks.push(get<0>(pointer));

        // 以出栈的顺序进行打印输出
        while (!tracks.empty()) {
            printf(" -> %c", char(tracks.top() + 65));
            tracks.pop();
        }
        printf("\n");
    }
}

int main() {
    Matrix graph = {
            {0,        12,       UINT_MAX, UINT_MAX, UINT_MAX, 16, 14},
            {12,       0,        10,       UINT_MAX, UINT_MAX, 7, UINT_MAX},
            {UINT_MAX, 10,       0, 3,               5,        6, UINT_MAX},
            {UINT_MAX, UINT_MAX, 3, 0,               4, UINT_MAX, UINT_MAX},
            {UINT_MAX, UINT_MAX, 5, 4,               0,        2,  8},
            {16,       7,        6,        UINT_MAX, 2,        9,  9},
            {14,       UINT_MAX, UINT_MAX, UINT_MAX, 8,        9,  0}
    };  // 图对应的连接矩阵
    auto results = dijkstra(graph, uint('D' - 65));          // 选取顶点C(大写字母A的ASCII编码是65)
    print(results);     // 打印输出结果
    return 0;
}

运行结果:

D -> C:	 Length: 3	 Paths: D -> C
D -> E:	 Length: 4	 Paths: D -> E
D -> F:	 Length: 6	 Paths: D -> E -> F
D -> G:	 Length: 12	 Paths: D -> E -> G
D -> B:	 Length: 13	 Paths: D -> C -> B
D -> A:	 Length: 22	 Paths: D -> E -> F -> A

你可能感兴趣的:(算法与数据结构,Dijkstra,最短路径)