Spark Streaming + Kafka 入门实例

初学Spark Streaming和Kafka,直接从网上找个例子入门,大致的流程:有日志数据源源不断地进入kafka,我们用一个spark streaming程序从kafka中消费日志数据,这些日志是一个字符串,然后将这些字符串用空格分割开,实时计算每一个单词出现的次数。

 

部署安装zookeeper:

1、官网下载zookeeper:http://mirror.metrocast.net/apache/zookeeper/

2、解压安装:

1

tar -zxvf zookeeper-3.4.8.tar.gz

3、配置conf/zoo.cfg:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

dataDir=/home/hadoop/data/zookeeper/data

# the port at which the clients will connect

clientPort=2181

# the maximum number of client connections.

# increase this if you need to handle more clients

#maxClientCnxns=60

#

# Be sure to read the maintenance section of the

# administrator guide before turning on autopurge.

#

# http://zookeeper.apache.org/doc/current/zookeeperAdmin.html#sc_maintenance

#

# The number of snapshots to retain in dataDir

#autopurge.snapRetainCount=3

# Purge task interval in hours

# Set to "0" to disable auto purge feature

#autopurge.purgeInterval=1

 

server.1=h181:2889:3889

maxSessionTimeout=1200000

4、启动,到zookeeper的bin目录下执行命令:

1

./zkServer.sh start ../conf/zoo.cfg 1>/dev/null 2>&1 &

5、可以用ps命令是否启动

1

ps -ef|grep zookeeper

部署安装Kafka:

1、官网下载kafka:https://kafka.apache.org/downloads

2、解压安装:

1

tar -zxvf kafka_2.11-0.10.1.0.tgz

3、配置:

config/server.properties:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

broker.id=0

 

listeners=PLAINTEXT://h181:9092

 

advertised.listeners=PLAINTEXT://h181:9092

 

num.network.threads=3

 

num.io.threads=8

 

socket.send.buffer.bytes=102400

 

socket.receive.buffer.bytes=102400

 

socket.request.max.bytes=104857600

 

log.dirs=/tmp/kafka-logs

 

num.partitions=1

 

num.recovery.threads.per.data.dir=1

 

log.retention.hours=168

 

log.segment.bytes=1073741824

 

log.retention.check.interval.ms=300000

 

zookeeper.connect=h181:2181

 

zookeeper.connection.timeout.ms=6000

这里只修改了listeners、advertised.listeners、zookeeper.connect。

config/consumer.properties:

1

2

3

4

5

6

7

zookeeper.connect=h181:2181

 

# timeout in ms for connecting to zookeeper

zookeeper.connection.timeout.ms=6000

 

#consumer group id

group.id=test-consumer-group

4、启动,到kafka的bin目录下执行命令:

1

./kafka-server-start.sh ../config/server.properties 1>/dev/null 2>&1 &

5、可以用ps命令是否启动:

1

ps -ef|grep kafka

示例程序:

依赖:jdk1.7,spark-2.0.1,kafka_2.11-0.10.1.0,zookeeper-3.4.8,scala-2.118

开发环境:ideaIU-14.1.4

测试环境:win7

建立maven工程KafkaSparkDemo,在pom.xml配置文件添加必要的依赖:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"

         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">

    <modelVersion>4.0.0modelVersion>

     

    <groupId>kafka-spark-demogroupId>

    <artifactId>kafka-spark-demoartifactId>

    <version>1.0-SNAPSHOTversion>

    <properties>

        <spark.version>2.0.1spark.version>

    properties>

    <dependencies>

     

        <dependency>

            <groupId>org.apache.sparkgroupId>

            <artifactId>spark-core_2.11artifactId>

            <version>${spark.version}version>

        dependency>

         

        <dependency>

            <groupId>org.apache.sparkgroupId>

            <artifactId>spark-streaming_2.11artifactId>

            <version>${spark.version}version>

        dependency>

 

        <dependency>

            <groupId>org.apache.sparkgroupId>

            <artifactId>spark-streaming-kafka_2.11artifactId>

            <version>1.6.2version>

        dependency>

         

        <dependency>

            <groupId>org.scala-langgroupId>

            <artifactId>scala-libraryartifactId>

            <version>2.11.8version>

        dependency>

 

    dependencies>

 

project>

KafkaSparkDemo对象:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

package com.mangocool.kafkaspark

 

import kafka.serializer.StringDecoder

import org.apache.spark.SparkConf

import org.apache.spark.streaming.dstream.InputDStream

import org.apache.spark.streaming.kafka.KafkaUtils

import org.apache.spark.streaming.{Duration, StreamingContext}

 

/**

  * Created by MANGOCOOL on 2016/11/11.

  */

object KafkaSparkDemo {

  def main(args: Array[String]) {

 

    System.setProperty("hadoop.home.dir", "E:\\Program Files\\hadoop-2.7.0")

    System.setProperty("HADOOP_USER_NAME","hadoop")

    System.setProperty("HADOOP_USER_PASSWORD","hadoop")

    val sparkConf = new SparkConf().setMaster("local[2]").setAppName("kafka-spark-demo")

    val scc = new StreamingContext(sparkConf, Duration(5000))

    scc.sparkContext.setLogLevel("ERROR")

    scc.checkpoint(".") // 因为使用到了updateStateByKey,所以必须要设置checkpoint

    val topics = Set("kafka-spark-demo") //我们需要消费的kafka数据的topic

    val brokers = "192.168.21.181:9092"

    val kafkaParam = Map[String, String](

//      "zookeeper.connect" -> "192.168.21.181:2181",

//      "group.id" -> "test-consumer-group",

      "metadata.broker.list" -> brokers,// kafka的broker list地址

      "serializer.class" -> "kafka.serializer.StringEncoder"

    )

 

    val stream: InputDStream[(String, String)] = createStream(scc, kafkaParam, topics)

 

    stream.map(_._2)      // 取出value

      .flatMap(_.split(" ")) // 将字符串使用空格分隔

      .map(r => (r, 1))      // 每个单词映射成一个pair

      .updateStateByKey[Int](updateFunc)  // 用当前batch的数据区更新已有的数据

      .print() // 打印前10个数据

    scc.start() // 真正启动程序

    scc.awaitTermination() //阻塞等待

  }

  val updateFunc = (currentValues: Seq[Int], preValue: Option[Int]) => {

    val curr = currentValues.sum

    val pre = preValue.getOrElse(0)

    Some(curr + pre)

  }

  /**

    * 创建一个从kafka获取数据的流.

    * @param scc           spark streaming上下文

    * @param kafkaParam    kafka相关配置

    * @param topics        需要消费的topic集合

    * @return

    */

  def createStream(scc: StreamingContext, kafkaParam: Map[String, String], topics: Set[String]) = {

    KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](scc, kafkaParam, topics)

  }

}

直接运行程序:

Spark Streaming + Kafka 入门实例_第1张图片

因为kafka队列里面还没有消息,所以为空。

启动kafka-console-producer工具,手动往kafka中依次写入如下数据:

1

./kafka-console-producer.sh --topic kafka-spark-demo --broker-list h181:9092

结果如下:

Spark Streaming + Kafka 入门实例_第2张图片

注:这里的broker-list的主机别用localhost,不然可能会遇到以下错误:

1

2

3

4

[hadoop@h181 bin]$ ./kafka-console-producer.sh --topic kafka-spark-demo --broker-list localhost:9092

hh

[2016-11-22 17:09:34,539] ERROR Error when sending message to topic kafka-spark-demo with key: null, value: 2 bytes with error: (org.apache.kafka.clients.producer.internals.ErrorLoggingCallback)

org.apache.kafka.common.errors.TimeoutException: Failed to update metadata after 60000 ms.

如果broker-list的端口不对,会遇到以下错误:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Exception in thread "main" org.apache.spark.SparkException: java.nio.channels.ClosedChannelException

    at org.apache.spark.streaming.kafka.KafkaCluster$$anonfun$checkErrors$1.apply(KafkaCluster.scala:366)

    at org.apache.spark.streaming.kafka.KafkaCluster$$anonfun$checkErrors$1.apply(KafkaCluster.scala:366)

    at scala.util.Either.fold(Either.scala:98)

    at org.apache.spark.streaming.kafka.KafkaCluster$.checkErrors(KafkaCluster.scala:365)

    at org.apache.spark.streaming.kafka.KafkaUtils$.getFromOffsets(KafkaUtils.scala:222)

    at org.apache.spark.streaming.kafka.KafkaUtils$.createDirectStream(KafkaUtils.scala:484)

    at com.dtxy.xbdp.test.KafkaSparkDemoMain$.createStream(KafkaSparkDemoMain.scala:54)

    at com.dtxy.xbdp.test.KafkaSparkDemoMain$.main(KafkaSparkDemo.scala:31)

    at com.dtxy.xbdp.test.KafkaSparkDemoMain.main(KafkaSparkDemo.scala)

    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)

    at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)

    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)

    at java.lang.reflect.Method.invoke(Method.java:498)

    at com.intellij.rt.execution.application.AppMain.main(AppMain.java:147)

你还可以用程序写入数据到kafka。

KafkaProducer类:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

package com.mangocool.kafkaspark;

 

import java.util.Properties;

import java.util.concurrent.TimeUnit;

 

import kafka.javaapi.producer.Producer;

import kafka.producer.KeyedMessage;

import kafka.producer.ProducerConfig;

import kafka.serializer.StringEncoder;

 

/**

 * Created by MANGOCOOL on 2016/11/23.

 */

public class kafkaProducer extends Thread {

 

    private String topic;

 

    public kafkaProducer(String topic){

        super();

        this.topic = topic;

    }

 

    @Override

    public void run() {

        Producer producer = createProducer();

        int i=0;

        while(true){

            producer.send(new KeyedMessage(topic, "message: " + i++));

            try {

                TimeUnit.SECONDS.sleep(1);

            } catch (InterruptedException e) {

                e.printStackTrace();

            }

        }

    }

 

    private Producer createProducer() {

        Properties properties = new Properties();

        properties.put("zookeeper.connect", "h181:2181");//声明zk

        properties.put("serializer.class", StringEncoder.class.getName());

        properties.put("metadata.broker.list", "h181:9092");// 声明kafka broker

        return new Producer(new ProducerConfig(properties));

    }

 

    public static void main(String[] args) {

        new kafkaProducer("kafka-spark-demo").start();// 使用kafka集群中创建好的主题 kafka-spark-demo

 

    }

}

你可能感兴趣的:(#,spark)