ACM_大牛总结的线段树专辑

附上原出处:http://blog.csdn.net/qq_25605637/article/details/46967529

【完全版】线段树

这是从大牛那里粘过来的总结,对于刚训练线段树的我来说帮助很大。希望这种清新的代码风格同样能让你受益.

在代码前先介绍一些我的线段树风格:

·        maxn是题目给的最大区间,而节点数要开4,确切的来说节点数要开大于maxn的最小2x的两倍

·        lsonrson分辨表示结点的左儿子和右儿子,由于每次传参数的时候都固定是这几个变量,所以可以用预定于比较方便的表示

·        以前的写法是另外开两个个数组记录每个结点所表示的区间,其实这个区间不必保存,一边算一边传下去就行,只需要写函数的时候多两个参数,结合lsonrson的预定义可以很方便

·        PushUP(int rt)是把当前结点的信息更新到父结点

·        PushDown(int rt)是把当前结点的信息更新给儿子结点

·        rt表示当前子树的根(root),也就是当前所在的结点

整理这些题目后我觉得线段树的题目整体上可以分成以下四个部分:

·        单点更新:最最基础的线段树,只更新叶子节点,然后把信息用PushUP(int r)这个函数更新上来

o    hdu1166 敌兵布阵
题意:O(-1)
思路:O(-1)
线段树功能:update:单点增减 query:区间求和

?View Code CPP

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

#include

 

#define lson l , m , rt << 1

#define rson m + 1 , r , rt << 1 | 1

const int maxn = 55555;

int sum[maxn<<2];

void PushUP(int rt) {

         sum[rt] = sum[rt<<1] + sum[rt<<1|1];

}

void build(int l,int r,int rt) {

         if (l == r) {

                 scanf(“%d”,&sum[rt]);

                 return ;

         }

         int m = (l + r) >> 1;

         build(lson);

         build(rson);

         PushUP(rt);

}

void update(int p,int add,int l,int r,int rt) {

         if (l == r) {

                 sum[rt] += add;

                 return ;

         }

         int m = (l + r) >> 1;

         if (p <= m) update(p , add , lson);

         else update(p , add , rson);

         PushUP(rt);

}

int query(int L,int R,int l,int r,int rt) {

         if (L <= l && r <= R) {

                 return sum[rt];

         }

         int m = (l + r) >> 1;

         int ret = 0;

         if (L <= m) ret += query(L , R , lson);

         if (R > m) ret += query(L , R , rson);

         return ret;

}

int main() {

         int T , n;

         scanf(“%d”,&T);

         for (int cas = 1 ; cas <= T ; cas ++) {

                 printf(“Case %d:\n,cas);

                 scanf(“%d”,&n);

                 build(1 , n , 1);

                 char op[10];

                 while (scanf(“%s”,op)) {

                          if (op[0] == ‘E’) break;

                          int a , b;

                          scanf(“%d%d”,&a,&b);

                          if (op[0] == ‘Q’) printf(“%d\n,query(a , b , 1 , n , 1));

                          else if (op[0] == ‘S’) update(a , -b , 1 , n , 1);

                          else update(a , b , 1 , n , 1);

                 }

         }

         return 0;

}

o    hdu1754 I Hate It
题意:O(-1)
思路:O(-1)
线段树功能:update:单点替换 query:区间最值

?View Code CPP

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

#include

#include

using namespace std;

 

#define lson l , m , rt << 1

#define rson m + 1 , r , rt << 1 | 1

const int maxn = 222222;

int MAX[maxn<<2];

void PushUP(int rt) {

         MAX[rt] = max(MAX[rt<<1] , MAX[rt<<1|1]);

}

void build(int l,int r,int rt) {

         if (l == r) {

                 scanf(“%d”,&MAX[rt]);

                 return ;

         }

         int m = (l + r) >> 1;

         build(lson);

         build(rson);

         PushUP(rt);

}

void update(int p,int sc,int l,int r,int rt) {

         if (l == r) {

                 MAX[rt] = sc;

                 return ;

         }

         int m = (l + r) >> 1;

         if (p <= m) update(p , sc , lson);

         else update(p , sc , rson);

         PushUP(rt);

}

int query(int L,int R,int l,int r,int rt) {

         if (L <= l && r <= R) {

                 return MAX[rt];

         }

         int m = (l + r) >> 1;

         int ret = 0;

         if (L <= m) ret = max(ret , query(L , R , lson));

         if (R > m) ret = max(ret , query(L , R , rson));

         return ret;

}

int main() {

         int n , m;

         while (~scanf(“%d%d”,&n,&m)) {

                 build(1 , n , 1);

                 while (m ) {

                          char op[2];

                          int a , b;

                          scanf(“%s%d%d”,op,&a,&b);

                          if (op[0] == ‘Q’) printf(“%d\n,query(a , b , 1 , n , 1));

                          else update(a , b , 1 , n , 1);

                 }

         }

         return 0;

}

o    hdu1394 Minimum Inversion Number
题意:Inversion后的最小逆序数
思路:O(nlogn)复杂度求出最初逆序数后,就可以用O(1)的复杂度分别递推出其他解
线段树功能:update:单点增减 query:区间求和

?View Code CPP

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

#include

#include

using namespace std;

 

#define lson l , m , rt << 1

#define rson m + 1 , r , rt << 1 | 1

const int maxn = 5555;

int sum[maxn<<2];

void PushUP(int rt) {

         sum[rt] = sum[rt<<1] + sum[rt<<1|1];

}

void build(int l,int r,int rt) {

         sum[rt] = 0;

         if (l == r) return ;

         int m = (l + r) >> 1;

         build(lson);

         build(rson);

}

void update(int p,int l,int r,int rt) {

         if (l == r) {

                 sum[rt] ++;

                 return ;

         }

         int m = (l + r) >> 1;

         if (p <= m) update(p , lson);

         else update(p , rson);

         PushUP(rt);

}

int query(int L,int R,int l,int r,int rt) {

         if (L <= l && r <= R) {

                 return sum[rt];

         }

         int m = (l + r) >> 1;

         int ret = 0;

         if (L <= m) ret += query(L , R , lson);

         if (R > m) ret += query(L , R , rson);

         return ret;

}

int x[maxn];

int main() {

         int n;

         while (~scanf(“%d”,&n)) {

                 build(0 , n - 1 , 1);

                 int sum = 0;

                 for (int i = 0 ; i < n ; i ++) {

                          scanf(“%d”,&x[i]);

                          sum += query(x[i] , n - 1 , 0 , n - 1 , 1);

                          update(x[i] , 0 , n - 1 , 1);

                 }

                 int ret = sum;

                 for (int i = 0 ; i < n ; i ++) {

                          sum += n - x[i] - x[i] - 1;

                          ret = min(ret , sum);

                 }

                 printf(“%d\n,ret);

         }

         return 0;

}

o    hdu2795 Billboard
题意:h*w的木板,放进一些1*L的物品,求每次放空间能容纳且最上边的位子
思路:每次找到最大值的位子,然后减去L
线段树功能:query:区间求最大值的位子(直接把update的操作在query里做了)

?View Code CPP

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

#include

#include

using namespace std;

 

#define lson l , m , rt << 1

#define rson m + 1 , r , rt << 1 | 1

const int maxn = 222222;

int h , w , n;

int MAX[maxn<<2];

void PushUP(int rt) {

         MAX[rt] = max(MAX[rt<<1] , MAX[rt<<1|1]);

}

void build(int l,int r,int rt) {

         MAX[rt] = w;

         if (l == r) return ;

         int m = (l + r) >> 1;

         build(lson);

         build(rson);

}

int query(int x,int l,int r,int rt) {

         if (l == r) {

                 MAX[rt] -= x;

                 return l;

         }

         int m = (l + r) >> 1;

         int ret = (MAX[rt<<1] >= x) ? query(x , lson) : query(x , rson);

         PushUP(rt);

         return ret;

}

int main() {

         while (~scanf(“%d%d%d”,&h,&w,&n)) {

                 if (h > n) h = n;

                 build(1 , h , 1);

                 while (n ) {

                          int x;

                          scanf(“%d”,&x);

                          if (MAX[1] < x) puts(“-1”);

                          else printf(“%d\n,query(x , 1 , h , 1));

                 }

         }

         return 0;

}

·        练习:

o    poj2828 Buy Tickets

o    poj2886 Who Gets the Most Candies?

·        成段更新(通常这对初学者来说是一道坎),需要用到延迟标记(或者说懒惰标记),简单来说就是每次更新的时候不要更新到底,用延迟标记使得更新延迟到下次需要更新or询问到的时候

o    hdu1698 Just a Hook
题意:O(-1)
思路:O(-1)
线段树功能:update:成段替换 (由于只query一次总区间,所以可以直接输出1结点的信息)

?View Code CPP

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

#include

#include

using namespace std;

 

#define lson l , m , rt << 1

#define rson m + 1 , r , rt << 1 | 1

const int maxn = 111111;

int h , w , n;

int col[maxn<<2];

int sum[maxn<<2];

void PushUp(int rt) {

         sum[rt] = sum[rt<<1] + sum[rt<<1|1];

}

void PushDown(int rt,int m) {

         if (col[rt]) {

                 col[rt<<1] = col[rt<<1|1] = col[rt];

                 sum[rt<<1] = (m - (m >> 1)) * col[rt];

                 sum[rt<<1|1] = (m >> 1) * col[rt];

                 col[rt] = 0;

         }

}

void build(int l,int r,int rt) {

         col[rt] = 0;

         sum[rt] = 1;

         if (l == r) return ;

         int m = (l + r) >> 1;

         build(lson);

         build(rson);

         PushUp(rt);

}

void update(int L,int R,int c,int l,int r,int rt) {

         if (L <= l && r <= R) {

                 col[rt] = c;

                 sum[rt] = c * (r - l + 1);

                 return ;

         }

         PushDown(rt , r - l + 1);

         int m = (l + r) >> 1;

         if (L <= m) update(L , R , c , lson);

         if (R > m) update(L , R , c , rson);

         PushUp(rt);

}

int main() {

         int T , n , m;

         scanf(“%d”,&T);

         for (int cas = 1 ; cas <= T ; cas ++) {

                 scanf(“%d%d”,&n,&m);

                 build(1 , n , 1);

                 while (m ) {

                          int a , b , c;

                          scanf(“%d%d%d”,&a,&b,&c);

                          update(a , b , c , 1 , n , 1);

                 }

                 printf(“Case %d: The total value of the hook is %d.\n,cas , sum[1]);

         }

         return 0;

}

o    poj3468 A Simple Problem with Integers
题意:O(-1)
思路:O(-1)
线段树功能:update:成段增减 query:区间求和

?View Code CPP

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

#include

#include

using namespace std;

 

#define lson l , m , rt << 1

#define rson m + 1 , r , rt << 1 | 1

#define LL long long

const int maxn = 111111;

LL add[maxn<<2];

LL sum[maxn<<2];

void PushUp(int rt) {

         sum[rt] = sum[rt<<1] + sum[rt<<1|1];

}

void PushDown(int rt,int m) {

         if (add[rt]) {

                 add[rt<<1] += add[rt];

                 add[rt<<1|1] += add[rt];

                 sum[rt<<1] += add[rt] * (m - (m >> 1));

                 sum[rt<<1|1] += add[rt] * (m >> 1);

                 add[rt] = 0;

         }

}

void build(int l,int r,int rt) {

         add[rt] = 0;

         if (l == r) {

                 scanf(“%lld”,&sum[rt]);

                 return ;

         }

         int m = (l + r) >> 1;

         build(lson);

         build(rson);

         PushUp(rt);

}

void update(int L,int R,int c,int l,int r,int rt) {

         if (L <= l && r <= R) {

                 add[rt] += c;

                 sum[rt] += (LL)c * (r - l + 1);

                 return ;

         }

         PushDown(rt , r - l + 1);

         int m = (l + r) >> 1;

         if (L <= m) update(L , R , c , lson);

         if (m < R) update(L , R , c , rson);

         PushUp(rt);

}

LL query(int L,int R,int l,int r,int rt) {

         if (L <= l && r <= R) {

                 return sum[rt];

         }

         PushDown(rt , r - l + 1);

         int m = (l + r) >> 1;

         LL ret = 0;

         if (L <= m) ret += query(L , R , lson);

         if (m < R) ret += query(L , R , rson);

         return ret;

}

int main() {

         int N , Q;

         scanf(“%d%d”,&N,&Q);

         build(1 , N , 1);

         while (Q ) {

                 char op[2];

                 int a , b , c;

                 scanf(“%s”,op);

                 if (op[0] == ‘Q’) {

                          scanf(“%d%d”,&a,&b);

                          printf(“%lld\n,query(a , b , 1 , N , 1));

                 } else {

                          scanf(“%d%d%d”,&a,&b,&c);

                          update(a , b , c , 1 , N , 1);

                 }

         }

         return 0;

}

o    poj2528 Mayor’s posters
题意:在墙上贴海报,海报可以互相覆盖,问最后可以看见几张海报
思路:这题数据范围很大,直接搞超时+超内存,需要离散化:
离散化简单的来说就是只取我们需要的值来用,比如说区间[1000,2000],[1990,2012]我们用不到[-∞,999][1001,1989][1991,1999][2001,2011][2013,+∞]这些值,所以我只需要1000,1990,2000,2012就够了,将其分别映射到0,1,2,3,在于复杂度就大大的降下来了
所以离散化要保存所有需要用到的值,排序后,分别映射到1~n,这样复杂度就会小很多很多
而这题的难点在于每个数字其实表示的是一个单位长度(并且一个点),这样普通的离散化会造成许多错误(包括我以前的代码,poj这题数据奇弱)
给出下面两个简单的例子应该能体现普通离散化的缺陷:
1-10 1-4 5-10
1-10 1-4 6-10
为了解决这种缺陷,我们可以在排序后的数组上加些处理,比如说[1,2,6,10]
如果相邻数字间距大于1的话,在其中加上任意一个数字,比如加成[1,2,3,6,7,10],然后再做线段树就好了.
线段树功能:update:成段替换 query:简单hash

?View Code CPP

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

#include

#include

#include

using namespace std;

#define lson l , m , rt << 1

#define rson m + 1 , r , rt << 1 | 1

 

const int maxn = 11111;

bool hash[maxn];

int li[maxn] , ri[maxn];

int X[maxn*3];

int col[maxn<<4];

int cnt;

 

void PushDown(int rt) {

         if (col[rt] != -1) {

                 col[rt<<1] = col[rt<<1|1] = col[rt];

                 col[rt] = -1;

         }

}

void update(int L,int R,int c,int l,int r,int rt) {

         if (L <= l && r <= R) {

                 col[rt] = c;

                 return ;

         }

         PushDown(rt);

         int m = (l + r) >> 1;

         if (L <= m) update(L , R , c , lson);

         if (m < R) update(L , R , c , rson);

}

void query(int l,int r,int rt) {

         if (col[rt] != -1) {

                 if (!hash[col[rt]]) cnt ++;

                 hash[ col[rt] ] = true;

                 return ;

         }

         if (l == r) return ;

         int m = (l + r) >> 1;

         query(lson);

         query(rson);

}

int Bin(int key,int n,int X[]) {

         int l = 0 , r = n - 1;

         while (l <= r) {

                 int m = (l + r) >> 1;

                 if (X[m] == key) return m;

                 if (X[m] < key) l = m + 1;

                 else r = m - 1;

         }

         return -1;

}

int main() {

         int T , n;

         scanf(“%d”,&T);

         while (T ) {

                 scanf(“%d”,&n);

                 int nn = 0;

                 for (int i = 0 ; i < n ; i ++) {

                          scanf(“%d%d”,&li[i] , &ri[i]);

                          X[nn++] = li[i];

                          X[nn++] = ri[i];

                 }

                 sort(X , X + nn);

                 int m = 1;

                 for (int i = 1 ; i < nn; i ++) {

                          if (X[i] != X[i-1]) X[m ++] = X[i];

                 }

                 for (int i = m - 1 ; i > 0 ; i ) {

                          if (X[i] != X[i-1] + 1) X[m ++] = X[i-1] + 1;

                 }

                 sort(X , X + m);

                 memset(col , -1 , sizeof(col));

                 for (int i = 0 ; i < n ; i ++) {

                          int l = Bin(li[i] , m , X);

                          int r = Bin(ri[i] , m , X);

                          update(l , r , i , 0 , m , 1);

                 }

                 cnt = 0;

                 memset(hash , false , sizeof(hash));

                 query(0 , m , 1);

                 printf(“%d\n,cnt);

         }

         return 0;

}

o    poj3225 Help with Intervals
题意:区间操作,,,补等
思路:
我们一个一个操作来分析:(01表示是否包含区间,-1表示该区间内既有包含又有不包含)
U:
把区间[l,r]覆盖成1
I:
[-∞,l)(r,∞]覆盖成0
D:
把区间[l,r]覆盖成0
C:
[-∞,l)(r,∞]覆盖成0 , [l,r]区间0/1互换
S:[l,r]
区间0/1互换

成段覆盖的操作很简单,比较特殊的就是区间0/1互换这个操作,我们可以称之为异或操作
很明显我们可以知道这个性质:当一个区间被覆盖后,不管之前有没有异或标记都没有意义了
所以当一个节点得到覆盖标记时把异或标记清空
而当一个节点得到异或标记的时候,先判断覆盖标记,如果是01,直接改变一下覆盖标记,不然的话改变异或标记

开区间闭区间只要数字乘以2就可以处理(偶数表示端点,奇数表示两端点间的区间)
线段树功能:update:成段替换,区间异或 query:简单hash

?View Code CPP

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

#include

#include

#include

#include

using namespace std;

#define lson l , m , rt << 1

#define rson m + 1 , r , rt << 1 | 1

 

const int maxn = 131072;

bool hash[maxn];

int cover[maxn<<2];

int XOR[maxn<<2];

void FXOR(int rt) {

         if (cover[rt] != -1) cover[rt] ^= 1;

         else XOR[rt] ^= 1;

}

void PushDown(int rt) {

         if (cover[rt] != -1) {

                 cover[rt<<1] = cover[rt<<1|1] = cover[rt];

                 XOR[rt<<1] = XOR[rt<<1|1] = 0;

                 cover[rt] = -1;

         }

         if (XOR[rt]) {

                 FXOR(rt<<1);

                 FXOR(rt<<1|1);

                 XOR[rt] = 0;

         }

}

void update(char op,int L,int R,int l,int r,int rt) {

         if (L <= l && r <= R) {

                 if (op == ‘U’) {

                          cover[rt] = 1;

                          XOR[rt] = 0;

                 } else if (op == ‘D’) {

                          cover[rt] = 0;

                          XOR[rt] = 0;

                 } else if (op == ‘C’ || op == ‘S’) {

                          FXOR(rt);

                 }

                 return ;

         }

         PushDown(rt);

         int m = (l + r) >> 1;

         if (L <= m) update(op , L , R , lson);

         else if (op == ‘I’ || op == ‘C’) {

                 XOR[rt<<1] = cover[rt<<1] = 0;

         }

         if (m < R) update(op , L , R , rson);

         else if (op == ‘I’ || op == ‘C’) {

                 XOR[rt<<1|1] = cover[rt<<1|1] = 0;

         }

}

void query(int l,int r,int rt) {

         if (cover[rt] == 1) {

                 for (int it = l ; it <= r ; it ++) {

                          hash[it] = true;

                 }

                 return ;

         } else if (cover[rt] == 0) return ;

         if (l == r) return ;

         PushDown(rt);

         int m = (l + r) >> 1;

         query(lson);

         query(rson);

}

int main() {

         cover[1] = XOR[1] = 0;

         char op , l , r;

         int a , b;

         while ( ~scanf(“%c %c%d,%d%c\n,&op , &l , &a , &b , &r) ) {

                 a <<= 1 , b <<= 1;

                 if (l == ‘(‘) a ++;

                 if (r == ‘)’) b ;

                 if (a > b) {

                          if (op == ‘C’ || op == ‘I’) {

                                   cover[1] = XOR[1] = 0;

                          }

                 } else update(op , a , b , 0 , maxn , 1);

         }

         query(0 , maxn , 1);

         bool flag = false;

         int s = -1 , e;

         for (int i = 0 ; i <= maxn ; i ++) {

                 if (hash[i]) {

                          if (s == -1) s = i;

                          e = i;

                 } else {

                          if (s != -1) {

                                   if (flag) printf(” “);

                                   flag = true;

                                   printf(“%c%d,%d%c”,s&1?‘(‘:‘[‘ , s>>1 , (e+1)>>1 , e&1?‘)’:‘]’);

                                   s = -1;

                          }

                 }

         }

         if (!flag) printf(“empty set”);

         puts(“”);

         return 0;

}

·        练习:

o    poj1436 Horizontally Visible Segments

o    poj2991 Crane

o    Another LCIS

o    Bracket Sequence

·        区间合并
这类题目会询问区间中满足条件的连续最长区间,所以PushUp的时候需要对左右儿子的区间进行合并

o    poj3667 Hotel
题意:1 a:询问是不是有连续长度为a的空房间,有的话住进最左边
2 a b:
[a,a+b-1]的房间清空
思路:记录区间中最长的空房间
线段树操作:update:区间替换 query:询问满足条件的最左断点

?View Code CPP

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

#include

#include

#include

#include

using namespace std;

#define lson l , m , rt << 1

#define rson m + 1 , r , rt << 1 | 1

 

const int maxn = 55555;

int lsum[maxn<<2] , rsum[maxn<<2] , msum[maxn<<2];

int cover[maxn<<2];

 

void PushDown(int rt,int m) {

         if (cover[rt] != -1) {

                 cover[rt<<1] = cover[rt<<1|1] = cover[rt];

                 msum[rt<<1] = lsum[rt<<1] = rsum[rt<<1] = cover[rt] ? 0 : m - (m >> 1);

                 msum[rt<<1|1] = lsum[rt<<1|1] = rsum[rt<<1|1] = cover[rt] ? 0 : (m >> 1);

                 cover[rt] = -1;

         }

}

void PushUp(int rt,int m) {

         lsum[rt] = lsum[rt<<1];

         rsum[rt] = rsum[rt<<1|1];

         if (lsum[rt] == m - (m >> 1)) lsum[rt] += lsum[rt<<1|1];

         if (rsum[rt] == (m >> 1)) rsum[rt] += rsum[rt<<1];

         msum[rt] = max(lsum[rt<<1|1] + rsum[rt<<1] , max(msum[rt<<1] , msum[rt<<1|1]));

}

void build(int l,int r,int rt) {

         msum[rt] = lsum[rt] = rsum[rt] = r - l + 1;

         cover[rt] = -1;

         if (l == r) return ;

         int m = (l + r) >> 1;

         build(lson);

         build(rson);

}

void update(int L,int R,int c,int l,int r,int rt) {

         if (L <= l && r <= R) {

                 msum[rt] = lsum[rt] = rsum[rt] = c ? 0 : r - l + 1;

                 cover[rt] = c;

                 return ;

         }

         PushDown(rt , r - l + 1);

         int m = (l + r) >> 1;

         if (L <= m) update(L , R , c , lson);

         if (m < R) update(L , R , c , rson);

         PushUp(rt , r - l + 1);

}

int query(int w,int l,int r,int rt) {

         if (l == r) return l;

         PushDown(rt , r - l + 1);

         int m = (l + r) >> 1;

         if (msum[rt<<1] >= w) return query(w , lson);

         else if (rsum[rt<<1] + lsum[rt<<1|1] >= w) return m - rsum[rt<<1] + 1;

         return query(w , rson);

}

int main() {

         int n , m;

         scanf(“%d%d”,&n,&m);

         build(1 , n , 1);

         while (m ) {

                 int op , a , b;

                 scanf(“%d”,&op);

                 if (op == 1) {

                          scanf(“%d”,&a);

                          if (msum[1] < a) puts(“0”);

                          else {

                                   int p = query(a , 1 , n , 1);

                                   printf(“%d\n,p);

                                   update(p , p + a - 1 , 1 , 1 , n , 1);

                          }

                 } else {

                          scanf(“%d%d”,&a,&b);

                          update(a , a + b - 1 , 0 , 1 , n , 1);

                 }

         }

         return 0;

}

·        练习:

o    hdu3308 LCIS

o    hdu3397 Sequence operation

o    hdu2871 Memory Control

o    hdu1540 Tunnel Warfare

o    CF46-D Parking Lot

·        扫描线
这类题目需要将一些操作排序,然后从左到右用一根扫描线(当然是在我们脑子里)扫过去
最典型的就是矩形面积并,周长并等题

o    hdu1542 Atlantis
题意:矩形面积并
思路:浮点数先要离散化;然后把矩形分成两条边,上边和下边,对横轴建树,然后从下到上扫描上去,cnt表示该区间下边比上边多几个
线段树操作:update:区间增减 query:直接取根节点的值

?View Code CPP

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

#include

#include

#include

#include

using namespace std;

#define lson l , m , rt << 1

#define rson m + 1 , r , rt << 1 | 1

 

const int maxn = 2222;

int cnt[maxn << 2];

double sum[maxn << 2];

double X[maxn];

struct Seg {

         double h , l , r;

         int s;

         Seg(){}

         Seg(double a,double b,double c,int d) : l(a) , r(b) , h(c) , s(d) {}

         bool operator < (const Seg &cmp) const {

                 return h < cmp.h;

         }

}ss[maxn];

void PushUp(int rt,int l,int r) {

         if (cnt[rt]) sum[rt] = X[r+1] - X[l];

         else if (l == r) sum[rt] = 0;

         else sum[rt] = sum[rt<<1] + sum[rt<<1|1];

}

void update(int L,int R,int c,int l,int r,int rt) {

         if (L <= l && r <= R) {

                 cnt[rt] += c;

                 PushUp(rt , l , r);

                 return ;

         }

         int m = (l + r) >> 1;

         if (L <= m) update(L , R , c , lson);

         if (m < R) update(L , R , c , rson);

         PushUp(rt , l , r);

}

int Bin(double key,int n,double X[]) {

         int l = 0 , r = n - 1;

         while (l <= r) {

                 int m = (l + r) >> 1;

                 if (X[m] == key) return m;

                 if (X[m] < key) l = m + 1;

                 else r = m - 1;

         }

         return -1;

}

int main() {

         int n , cas = 1;

         while (~scanf(“%d”,&n) && n) {

                 int m = 0;

                 while (n ) {

                          double a , b , c , d;

                          scanf(“%lf%lf%lf%lf”,&a,&b,&c,&d);

                          X[m] = a;

                          ss[m++] = Seg(a , c , b , 1);

                          X[m] = c;

                          ss[m++] = Seg(a , c , d , -1);

                 }

                 sort(X , X + m);

                 sort(ss , ss + m);

                 int k = 1;

                 for (int i = 1 ; i < m ; i ++) {

                          if (X[i] != X[i-1]) X[k++] = X[i];

                 }

                 memset(cnt , 0 , sizeof(cnt));

                 memset(sum , 0 , sizeof(sum));

                 double ret = 0;

                 for (int i = 0 ; i < m - 1 ; i ++) {

                          int l = Bin(ss[i].l , k , X);

                          int r = Bin(ss[i].r , k , X) - 1;

                          if (l <= r) update(l , r , ss[i].s , 0 , k - 1, 1);

                          ret += sum[1] * (ss[i+1].h - ss[i].h);

                 }

                 printf(“Test case #%d\nTotal explored area: %.2lf\n\n,cas++ , ret);

         }

         return 0;

}

o    hdu1828 Picture
题意:矩形周长并
思路:与面积不同的地方是还要记录竖的边有几个(numseg记录),并且当边界重合的时候需要合并(lbdrbd表示边界来辅助)
线段树操作:update:区间增减 query:直接取根节点的值

?View Code CPP

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

#include

#include

#include

#include

using namespace std;

#define lson l , m , rt << 1

#define rson m + 1 , r , rt << 1 | 1

 

const int maxn = 22222;

struct Seg{

         int l , r , h , s;

         Seg() {}

         Seg(int a,int b,int c,int d):l(a) , r(b) , h(c) , s(d) {}

         bool operator < (const Seg &cmp) const {

                 if (h == cmp.h) return s > cmp.s;

                 return h < cmp.h;

         }

}ss[maxn];

bool lbd[maxn<<2] , rbd[maxn<<2];

int numseg[maxn<<2];

int cnt[maxn<<2];

int len[maxn<<2];

void PushUP(int rt,int l,int r) {

         if (cnt[rt]) {

                 lbd[rt] = rbd[rt] = 1;

                 len[rt] = r - l + 1;

                 numseg[rt] = 2;

         } else if (l == r) {

                 len[rt] = numseg[rt] = lbd[rt] = rbd[rt] = 0;

         } else {

                 lbd[rt] = lbd[rt<<1];

                 rbd[rt] = rbd[rt<<1|1];

                 len[rt] = len[rt<<1] + len[rt<<1|1];

                 numseg[rt] = numseg[rt<<1] + numseg[rt<<1|1];

                 if (lbd[rt<<1|1] && rbd[rt<<1]) numseg[rt] -= 2;//两条线重合

         }

}

void update(int L,int R,int c,int l,int r,int rt) {

         if (L <= l && r <= R) {

                 cnt[rt] += c;

                 PushUP(rt , l , r);

                 return ;

         }

         int m = (l + r) >> 1;

         if (L <= m) update(L , R , c , lson);

         if (m < R) update(L , R , c , rson);

         PushUP(rt , l , r);

}

int main() {

         int n;

         while (~scanf(“%d”,&n)) {

                 int m = 0;

                 int lbd = 10000, rbd = -10000;

                 for (int i = 0 ; i < n ; i ++) {

                          int a , b , c , d;

                          scanf(“%d%d%d%d”,&a,&b,&c,&d);

                          lbd = min(lbd , a);

                          rbd = max(rbd , c);

                          ss[m++] = Seg(a , c , b , 1);

                          ss[m++] = Seg(a , c , d , -1);

                 }

                 sort(ss , ss + m);

                 int ret = 0 , last = 0;

                 for (int i = 0 ; i < m ; i ++) {

                          if (ss[i].l < ss[i].r) update(ss[i].l , ss[i].r - 1 , ss[i].s , lbd , rbd - 1 , 1);

                          ret += numseg[1] * (ss[i+1].h - ss[i].h);

                          ret += abs(len[1] - last);

                          last = len[1];

                 }

                 printf(“%d\n,ret);

         }

         return 0;

}

·        练习

o    hdu3265 Posters
hdu3642 Get The Treasury
poj2482 Stars in Your Window
poj2464 Brownie Points II
hdu3255 Farming 
ural1707 Hypnotoad’s Secret
uva11983 Weird Advertisement

线段树与其他结合练习(欢迎大家补充):

·        hdu3954 Level up

·        hdu4027 Can you answer these queries?

·        hdu3333 Turing Tree

·        hdu3874 Necklace

·        hdu3016 Man Down

·        hdu3340 Rain in ACStar

·        zju3511 Cake Robbery

·        UESTC1558 Charitable Exchange

·        CF85-D Sum of Medians

·        spojGSS2 Can you answer these queries II

你可能感兴趣的:(ACM总结与模板,ACM_线段树)