python实现感知器算法

在1943年,沃伦麦卡洛可与沃尔特皮茨提出了第一个脑神经元的抽象模型,简称麦卡洛可-皮茨神经元(McCullock-Pitts neuron)简称MCP,大脑神经元的结构如下图。麦卡洛可和皮茨将神经细胞描述为一个具备二进制输出的逻辑门。树突接收多个输入信号,当输入信号累加超过一定的值(阈值),就会产生一个输出信号。弗兰克罗森布拉特基于MCP神经元提出了第一个感知器学习算法,同时它还提出了一个自学习算法,此算法可以通过对输入信号和输出信号的学习,自动的获取到权重系数,通过输入信号与权重系数的乘积来判断神经元是否被激活(产生输出信号)。

python实现感知器算法_第1张图片

一、感知器算法

我们将输入信号定义为一个x向量,x=(x1,x2,x3..),将权重定义为ω=(ω1,ω2,ω3...)其中ω0的值为,将z定义为为两个向量之间的乘积,所以输出z=x1*ω1 + x2*ω2+....,然后将z通过激励(激活)函数,作为真正的输出。其中激活函数是一个分段函数,下图是一个阶跃函数,当输入信号大于0的时候输出为1,小于0的时候输出为0,这里的阶跃函数阈值设置为0了。定义激活函数为Φ(z),给激活函数Φ(z)设定一个阈值θ,当激活函数的输出大于阈值θ的时候,将输出划分为正类(1),小于阈值θ的时候将输出划分为负类(-1)。如果,将阈值θ移到等式的左边z=x1*

你可能感兴趣的:(机器学习,python机器学习)