FCOS+ASFF

FCOS加入ASFF加权结构

将FCOS中fpn.py替换为下面代码即可。

# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import torch
import torch.nn.functional as F
from torch import nn


class ASFF(nn.Module):
    def __init__(self, level, rfb=False, vis=False):
        super(ASFF, self).__init__()
        self.level = level
        # self.dim = [512, 256, 256]
        self.dim = [256, 256, 256]
        self.inter_dim = self.dim[self.level]
        if level == 0:
            self.stride_level_1 = add_conv(256, self.inter_dim, 3, 2)
            self.stride_level_2 = add_conv(256, self.inter_dim, 3, 2)
            # self.expand = add_conv(self.inter_dim, 1024, 3, 1)
            self.expand = add_conv(self.inter_dim, 256, 3, 1)
        elif level == 1:
            # self.compress_level_0 = add_conv(512, self.inter_dim, 1, 1)
            self.compress_level_0 = add_conv(256, self.inter_dim, 1, 1)
            self.stride_level_2 = add_conv(256, self.inter_dim, 3, 2)
            # self.expand = add_conv(self.inter_dim, 512, 3, 1)
            self.expand = add_conv(self.inter_dim, 256, 3, 1)
        elif level == 2:
            # self.compress_level_0 = add_conv(512, self.inter_dim, 1, 1)
            self.compress_level_0 = add_conv(256, self.inter_dim, 1, 1)
            self.expand = add_conv(self.inter_dim, 256, 3, 1)

        # when adding rfb, we use half number of channels to save memory
        compress_c = 8 if rfb else 16

        self.weight_level_0 = add_conv(self.inter_dim, compress_c, 1, 1)
        self.weight_level_1 = add_conv(self.inter_dim, compress_c, 1, 1)
        self.weight_level_2 = add_conv(self.inter_dim, compress_c, 1, 1)

        self.weight_levels = nn.Conv2d(
            compress_c * 3, 3, kernel_size=1, stride=1, padding=0)
        self.vis = vis

    def forward(self, x_level_0, x_level_1, x_level_2):
        # import ipdb
        # ipdb.set_trace()
        if self.level == 0:
            level_0_resized = x_level_0
            level_1_resized = self.stride_level_1(x_level_1)

            level_2_downsampled_inter = F.max_pool2d(
                x_level_2, 3, stride=2, padding=1)
            level_2_resized = self.stride_level_2(level_2_downsampled_inter)

        elif self.level == 1:
            level_0_compressed = self.compress_level_0(x_level_0)
            level_0_resized = F.interpolate(
                level_0_compressed, scale_factor=2, mode='nearest')
            level_1_resized = x_level_1
            level_2_resized = self.stride_level_2(x_level_2)
        elif self.level == 2:
            level_0_compressed = self.compress_level_0(x_level_0)
            level_0_resized = F.interpolate(
                level_0_compressed, scale_factor=4, mode='nearest')
            level_1_resized = F.interpolate(
                x_level_1, scale_factor=2, mode='nearest')
            level_2_resized = x_level_2

        level_0_weight_v = self.weight_level_0(level_0_resized)
        level_1_weight_v = self.weight_level_1(level_1_resized)
        level_2_weight_v = self.weight_level_2(level_2_resized)
        levels_weight_v = torch.cat(
            (level_0_weight_v, level_1_weight_v, level_2_weight_v), 1)
        levels_weight = self.weight_levels(levels_weight_v)
        levels_weight = F.softmax(levels_weight, dim=1)

        fused_out_reduced = level_0_resized * levels_weight[:, 0:1, :, :] +\
            level_1_resized * levels_weight[:, 1:2, :, :] +\
            level_2_resized * levels_weight[:, 2:, :, :]

        out = self.expand(fused_out_reduced)

        if self.vis:
            return out, levels_weight, fused_out_reduced.sum(dim=1)
        else:
            return out


def add_conv(in_ch, out_ch, ksize, stride, leaky=True):
    """
    Add a conv2d / batchnorm / leaky ReLU block.
    Args:
        in_ch (int): number of input channels of the convolution layer.
        out_ch (int): number of output channels of the convolution layer.
        ksize (int): kernel size of the convolution layer.
        stride (int): stride of the convolution layer.
    Returns:
        stage (Sequential) : Sequential layers composing a convolution block.
    """
    stage = nn.Sequential()
    pad = (ksize - 1) // 2
    stage.add_module('conv', nn.Conv2d(in_channels=in_ch,
                                       out_channels=out_ch, kernel_size=ksize, stride=stride,
                                       padding=pad, bias=False))
    stage.add_module('batch_norm', nn.BatchNorm2d(out_ch))
    if leaky:
        stage.add_module('leaky', nn.LeakyReLU(0.1))
    else:
        stage.add_module('relu6', nn.ReLU6(inplace=True))
    return stage

    def forward(self, x_level_0, x_level_1, x_level_2):
        if self.level == 0:
            level_0_resized = x_level_0
            level_1_resized = self.stride_level_1(x_level_1)

            level_2_downsampled_inter = F.max_pool2d(
                x_level_2, 3, stride=2, padding=1)
            level_2_resized = self.stride_level_2(level_2_downsampled_inter)

        elif self.level == 1:
            level_0_compressed = self.compress_level_0(x_level_0)
            level_0_resized = F.interpolate(
                level_0_compressed, scale_factor=2, mode='nearest')
            level_1_resized = x_level_1
            level_2_resized = self.stride_level_2(x_level_2)
        elif self.level == 2:
            level_0_compressed = self.compress_level_0(x_level_0)
            level_0_resized = F.interpolate(
                level_0_compressed, scale_factor=4, mode='nearest')
            level_1_resized = F.interpolate(
                x_level_1, scale_factor=2, mode='nearest')
            level_2_resized = x_level_2

        level_0_weight_v = self.weight_level_0(level_0_resized)
        level_1_weight_v = self.weight_level_1(level_1_resized)
        level_2_weight_v = self.weight_level_2(level_2_resized)
        levels_weight_v = torch.cat(
            (level_0_weight_v, level_1_weight_v, level_2_weight_v), 1)
        levels_weight = self.weight_levels(levels_weight_v)
        levels_weight = F.softmax(levels_weight, dim=1)

        fused_out_reduced = level_0_resized * levels_weight[:, 0:1, :, :] +\
            level_1_resized * levels_weight[:, 1:2, :, :] +\
            level_2_resized * levels_weight[:, 2:, :, :]

        out = self.expand(fused_out_reduced)

        if self.vis:
            return out, levels_weight, fused_out_reduced.sum(dim=1)
        else:
            return out


class FPN(nn.Module):
    """
    Module that adds FPN on top of a list of feature maps.
    The feature maps are currently supposed to be in increasing depth
    order, and must be consecutive
    """

    def __init__(
        self, in_channels_list, out_channels, conv_block, top_blocks=None
    ):
        """
        Arguments:
            in_channels_list (list[int]): number of channels for each feature map that
                will be fed
            out_channels (int): number of channels of the FPN representation
            top_blocks (nn.Module or None): if provided, an extra operation will
                be performed on the output of the last (smallest resolution)
                FPN output, and the result will extend the result list
        """
        super(FPN, self).__init__()
        self.inner_blocks = []
        self.layer_blocks = []
        for idx, in_channels in enumerate(in_channels_list, 1):
            inner_block = "fpn_inner{}".format(idx)
            layer_block = "fpn_layer{}".format(idx)

            if in_channels == 0:
                continue
            inner_block_module = conv_block(in_channels, out_channels, 1)
            layer_block_module = conv_block(out_channels, out_channels, 3, 1)
            self.add_module(inner_block, inner_block_module)
            self.add_module(layer_block, layer_block_module)
            self.inner_blocks.append(inner_block)
            self.layer_blocks.append(layer_block)
        self.top_blocks = top_blocks
        self.asff_level0 = ASFF(level=0)
        self.asff_level1 = ASFF(level=1)
        self.asff_level2 = ASFF(level=2)

    def forward(self, x):
        """
        Arguments:
            x (list[Tensor]): feature maps for each feature level.
        Returns:
            results (tuple[Tensor]): feature maps after FPN layers.
                They are ordered from highest resolution first.
        """
        last_inner = getattr(self, self.inner_blocks[-1])(x[-1])
        results = []
        results.append(getattr(self, self.layer_blocks[-1])(last_inner))
        for feature, inner_block, layer_block in zip(
            x[:-1][::-1], self.inner_blocks[:-1][::-1], self.layer_blocks[:-1][::-1]
        ):
            if not inner_block:
                continue
            # inner_top_down = F.interpolate(last_inner, scale_factor=2, mode="nearest")
            inner_lateral = getattr(self, inner_block)(feature)
            inner_top_down = F.interpolate(
                last_inner, size=(
                    int(inner_lateral.shape[-2]), int(inner_lateral.shape[-1])),
                mode='nearest'
            )
            last_inner = inner_lateral + inner_top_down
            results.insert(0, getattr(self, layer_block)(last_inner))

        results_after_asff = [None, None, None]
        results_after_asff[2] = self.asff_level0(
            results[2], results[1], results[0])
        results_after_asff[1] = self.asff_level1(
            results[2], results[1], results[0])
        results_after_asff[0] = self.asff_level2(
            results[2], results[1], results[0])

        # import ipdb
        # ipdb.set_trace()
        if isinstance(self.top_blocks, LastLevelP6P7):
            last_results = self.top_blocks(x[-1], results[-1])
            # results.extend(last_results)
            results_after_asff.extend(last_results)
        elif isinstance(self.top_blocks, LastLevelMaxPool):
            last_results = self.top_blocks(results[-1])
            # results.extend(last_results)
            results_after_asff.extend(last_results)

        return tuple(results_after_asff)


class LastLevelMaxPool(nn.Module):
    def forward(self, x):
        return [F.max_pool2d(x, 1, 2, 0)]


class LastLevelP6P7(nn.Module):
    """
    This module is used in RetinaNet to generate extra layers, P6 and P7.
    """

    def __init__(self, in_channels, out_channels):
        super(LastLevelP6P7, self).__init__()
        self.p6 = nn.Conv2d(in_channels, out_channels, 3, 2, 1)
        self.p7 = nn.Conv2d(out_channels, out_channels, 3, 2, 1)
        for module in [self.p6, self.p7]:
            nn.init.kaiming_uniform_(module.weight, a=1)
            nn.init.constant_(module.bias, 0)
        self.use_P5 = in_channels == out_channels

    def forward(self, c5, p5):
        x = p5 if self.use_P5 else c5
        p6 = self.p6(x)
        p7 = self.p7(F.relu(p6))
        return [p6, p7]

你可能感兴趣的:(笔记)