ubuntu 14.04 64位
java 1.8.0_45(1.7即可)
ssh(sshd运行)
hadoop2.7.2(http://hadoop.apache.org/releases.html)
1.下载hadoop2.7.2的binary版本 http://www.apache.org/dyn/closer.cgi/hadoop/common/hadoop-2.7.2/hadoop-2.7.2.tar.gz
2.解压,并将解压得到的hadoop-2.7.2文件夹移到/usr/local中
3.cd 到/usr/local/hadoop-2.7.2目录
4.设置JAVA_HOME参数:在当前目录的etc/hadoop/文件末尾添加
# set to the root of your Java installation
export JAVA_HOME=/usr/local/jdk1.8.0/
5.执行命令bin/hadoop,打印hadoop用法。(注意:不是/bin/hadoop)
6.此时,hadoop默认是Standalone单机模式,测试hadoop如下:
$ mkdir input
$ cp etc/hadoop/*.xml input
$ bin/hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.2.jar grep input output 'dfs[a-z.]+'
$ cat output/*
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class WordCount {
public static class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable>{
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
}
public static class IntSumReducer
extends Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable values,
Context context
) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
先设置环境变量:
export JAVA_HOME=/usr/local/jdk1.8.0
export PATH=${JAVA_HOME}/bin:${PATH}
export HADOOP_CLASSPATH=${JAVA_HOME}/lib/tools.jar
其中,HADOOP_CLASSPATH是指定hadoop搜索哪些路径下的.class文件,下面用到的com.sun.tools.javac.Main就在${JAVA_HOME}/lib/tools.jar中。
然后,编译:
${HADOOP_HOME}/bin/hadoop com.sun.tools.javac.Main WordCount.java
jar cf wc.jar WordCount*.class
当前目录下生成WordCount$IntSumReducer.class、WordCount$TokenizerMapper.class和WordCount.class三个文件;再用jar打包这三个文件,生成wc.jar。
${HADOOP_HOME}/bin/hadoop jar wc.jar WordCount ./input ./output
输入文件放在input文件夹中,hadoop生成output目录保存结果。
2中可以不打包class文件,只要把class所在文件夹的路径(当前路径)加到HADOOP_CLASSPATH中即可,也即
export HADOOP_CLASSPATH=.:${HADOOP_CLASSPATH}
然后直接运行即可:
${HADOOP_HOME}/bin/hadoop WordCount ./input ./output
[1] Hadoop: Setting up a Single Node Cluster.
[2] ubuntu下搭建JAVA开发环境
[3] MapReduce Tutorial