目录
一、准备:明确概念
GPS
GSM
缺点:
GPRS
GNSS
二、芯片A7
三、这个模块
四、GPRS模块的一些坑
五、几种通信方式
蓝牙
Zigbee
Z波
6LowPAN
线程
无线上网(WIFI)
蜂窝
NFC
Sigfox
Neul
LoRaWAN
GPS(Global Positioning System)全球定位系统。是一个属于美国的卫星导航系统。
GPS可以提供车辆定位、防盗、反劫、行驶路线监控及呼叫指挥等功能。要实现以上所有功能必须具备GPS终端、传输网络和监控平台三个要素。
全球移动通信系统(Global System for Mobile Communications) ,缩写为GSM,由欧洲电信标准组织ETSI制订的一个数字移动通信标准。它的空中接口采用时分多址技术。自90年代中期投入商用以来,被全球超过100个国家采用。GSM标准的设备占据当前全球蜂窝移动通信设备市场80%以上。
全球移动通信系统Global System for Mobile Communication就是众所周知的GSM,是当前应用最为广泛的移动电话标准。全球超过200个国家和地区超过10亿人正在使用GSM电话。GSM标准的无处不在使得在移动电话运营商之间签署"漫游协定"后用户的国际漫游变得很平常。 GSM 较之它以前的标准最大的不同是它的信令和语音信道都是数字式的,因此GSM被看作是第二代 (2G)移动电话系统。 这说明数字通讯从很早就已经构建到系统中。GSM是一个当前由3GPP开发的开放标准。
2015年,全球诸多GSM网络运营商,已经将2017年确定为关闭GSM网络的年份。
GSM属于第2代(2G)蜂窝移动通信技术。模拟蜂窝技术被称为一代移动通信技术,宽带CDMA技术被称为三代移动通信技术,即3G。
应用:移动电话
用户发出的短消息首先被发送到短信息中心的服务器中,然后短信中心的服务器对所收到的短消息进行排队处理,按顺序再发送给相应的接收用户终端,如果接收用户关机或超出服务区不能正常通信时,则该条短消息进行一定的延时后重新发送,这样有可能会造成后发的短消息先到的情况。
此外短消息中心服务器为每一个用户开设的缓存区一般较为有限,约15~25条,当接收缓存区存满而接收用户还不能正常通信时,将不再接收新的短消息,即发生短消息拥塞,造成短消息丢失。
短消息在短消息中心服务器中保留的时间也有一定的期限,一般为一天左右。为了保证监测站与中心管理机的数据交换,一定要使接收机与网络处于可靠的通信状态。
GSM手机的GSM模块所接收的短消息被保存SIM卡中,普通SIM卡一般能存储25条短消息,因此,在使用过程当中应及时删除已处理过的短消息,以免造成短消息的丢失
GPRS(General Packet Radio Service)是通用分组无线服务技术的简称,它是GSM移动电话用户可用的一种移动数据业务,属于第二代移动通信中的数据传输技术。GPRS可说是GSM的延续。GPRS和以往连续在频道传输的方式不同,是以封包(Packet)式来传输,因此使用者所负担的费用是以其传输资料单位计算,并非使用其整个频道,理论上较为便宜。GPRS的传输速率可提升至56甚至114Kbps。
优点:
相对原来GSM的拨号方式的电路交换数据传送方式,GPRS是分组交换技术,具有"高速"和"永远在线"的优点
实时在线:“实时在线”指用户随时与网络保持联系。举个例子,用户访问互联网时,手机就在无线信道上发送和接收数据,就算没有数据传送,手机还会一直与网络保持连接,不但可以由用户侧发起数据传输,还可以从网络侧随时启动push类业务,不像普通拨号上网那样断线后必须重新拨号才能再次接入互联网。(发起的数据传输是双向的)
按量计费:对于电路交换模式的GSM系统,在整个连接期内,用户无论是否传送数据都将独自占有无线信道。对于分组交换模式的GPRS,用户只有在发送或接收数据期间才占用资源。这意味着多个用户可高效率地共享同一无线信道,从而提高了资源的利用率。相应于分组交换的技术特点,GPRS用户的计费以通信的数据流量为主要依据,体现了“得到多少、支付多少”的原则。没有数据流量传递时,用户即使挂在网上也是不收费的。
快捷登录:GPRS手机一开机就能够附着到GPRS网络上,即已经与GPRS网络建立联系,附着的时间一般是3~5秒。每次使用GPRS数据业务时,需要一个激活的过程,一般是1~3秒,激活之后就已经完全接入了互联网。而固定拨号方式接入互联网需要拨号、验证用户姓名密码、登录服务器等过程,至少需要8~10秒甚至更长的时间。
高速传输 :GPRS采用分组交换技术,数据传输速率最高理论值能达171.2kbit/s,此时已经完全可以支持像多媒体图像传输业务这样一些对带宽要求较高的应用业务。但171.2kbit/s的理论值是在采用CS-4编码方式且无线环境良好、信道充足的情况下实现的。实际数据传输速率要受网络编码方式、终端支持、无线环境等诸多因素影响。目前GPRS用户的接入速度还在40kbit/s以下,在使用数据加速系统后,速率可以提高到60kbit/s~80kbit/s左右
全球导航卫星系统(Global Navigation Satellite System)
全球导航卫星系统定位是利用一组卫星的伪距、星历、卫星发射时间等观测量,同时还必须知道用户钟差。全球导航卫星系统是能在地球表面或近地空间的任何地点为用户提供全天候的3维坐标和速度以及时间信息的空基无线电导航定位系统。因此,通俗一点说如果你除了要知道经纬度还想知道高度的话,那么,必须对收到4颗卫星才能准确定位。
GNSS其实就是对全球多个导航卫星系统统一的一个名称,如世界四大GNSS系统:美国GPS、俄罗斯GLONASS、欧盟GALILEO和中国北斗卫星导航系统BDS
总而言之,GPS是一个属于美国自主研发的全球定位导航系统;GSM是欧洲电信标准组织ETSI制订的一个数字移动通信标准(只是一个标准,就像大家玩游戏都得遵守的游戏规则);GPRS是一种数据传输技术(只是一种技术,比如玩游戏时你在规则范围内的一种骚操作);GNSS是一个统称。
安信可
A7=GSM/GPRS+GPS 无线模块
该模组的主控芯片基于“锐迪科微电子的RDA8951G”
A7在A6模组现有的基础上,增加的GPS功能可以使其有着更为强大的应用领域。方便嵌入在众多的监测,遥控,安防,车辆导航,定位的硬件产品。以及当下火热的可穿戴设备上。可以应用在诸如儿童/老人智能定位鞋,电动车/山地车定位报警,宠物定位等领域。
什么是GPRS模块?
GPRS模块又名无线数传模块,简单来讲是实现TTL串口通讯转为GPRS无线通讯的模块。利用手机SIM卡和运营商的GPRS网络提供无线长距离数据传输功能。
使用GPRS模块的设备可以在无网络、无WIFI的野外环境下,与服务器进行数据交互。
而A7作为一款使用简单的GPRS透传模块,方案成熟拥有标准GSM07.07,07.05 AT命令及Ai-Thinker 扩展命令可快速上手,缩短开发周期,降低使用门槛。
特点:
来几张,我手里面有的模块。
要做一个偏远地区的物联网控制应用,考虑了多种通信方式,据我所知总共也就这几种:有线,WIFI,GPRS。其余的什么MQTT,XBEE,RFID等等也离不开网络,或者可以这样设计:用RFID做设备间信息传输,然后部署一台另外的设备负责把最终信息存储设备的信息通过网络发送到服务端,这样能减少一些联网设备,不过感觉意义不大。
首先是第一个坑,现在arduino gprs设备几乎都是使用的2G通信,而运营商的2G通道渐渐都关闭了,会伴随着速度缓慢,信号丢失,无反应等各种情况,所以有时候写出来程序调试半天发现是通信的问题,直接让人怀疑选型gprs是个错误,这时候就要在通信程序中加入各种判断,考虑各种情况,工作量大幅上升。
去V2EX发帖吐槽,总结了网友给出消息:摩拜单车锁用的通信方式是移动定制的4G物联网流量卡,公路上的抓拍摄像头使用的是有线连接,自动货物出售机普遍采用4G物联网卡,远洋船舶通信是卫星信号,流量费贵出天际。总之GPRS通信处于被淘汰的边缘了。
应该有人问,那为什么不选4G?一个字:“穷”,arduino官方有支持2G/3G/4G的模块,一个将近900元,在硬件领域,有时候1分钱都要比较,不是斤斤计较,因为大量的设备意味着造价数量级的升高,同样能给出解决方案,老板肯定会选择报价低的。自己做?我反正做不出。
第二个坑,arduino gprs通信模块便宜的有A6,SIM800,SIM900,这些模块发送一个HTTP GET请求都要非常多的步骤,甚至A6模块要自己实现HTTP请求,因为它自带的只有TCP,更别说加密请求,生成鉴权token等东西了,这一套写下来,没有个几千行搞不定。
第三个坑,耗电量大,GPRS本就不是为物联网设计的,它甚至要外部供电,通信瞬间电流可达到2A,瞬间RF功率2W……耗电量刷刷的~
总之,以后想选型GPRS模块的朋友要做好心里准备,再加上近期的伪基站诈骗一夜一无所有的事件,2G短信通道会被关闭的更多,GPRS不再是一个好的选择方式。
许多通信技术是众所周知的,如WiFi,蓝牙,ZigBee和2G/3G/4G蜂窝,但也有几个新兴的新兴网络选项,如线程作为家庭自动化应用的替代品,以及在主要城市实施的空白电视技术用于更广泛的基于IoT的用例。根据应用,范围,数据要求,安全性和功率需求以及电池寿命等因素将决定某种形式的技术组合的选择。这些是向开发人员提供的一些主要通信技术。
重要的短距离通信技术当然是蓝牙技术,在计算和许多消费品市场中已经变得非常重要。预计这是可穿戴产品的关键,特别是连接到物联网,尽管可能通过智能手机在许多情况下。新的蓝牙低功耗(BLE)或蓝牙智能(如现在已被标注)是物联网应用的重要协议。重要的是,虽然它提供了与蓝牙类似的范围,但它的设计旨在显着降低功耗。
但是,Smart/BLE并不是真正设计用于文件传输,更适合于小块数据。鉴于其在智能手机和许多其他移动设备上的广泛集成,因此在许多竞争技术的个人设备环境中肯定具有重大优势。根据蓝牙SIG,超过90%的蓝牙智能手机,包括iOS,Android和Windows的型号,预计到2018年将“智能就绪”。
使用蓝牙智能功能的设备包含了基于射频收发器,基带和协议栈的基本数据速率和低能量核心配置的蓝牙核心规范版本4.0(或更高版本 – 2014年底最新版本4.2) 。重要的是,版本4.2通过其互联网协议支持配置文件将允许蓝牙智能传感器通过6LoWPAN连接直接访问互联网(下面更多)。这种IP连接使得可以使用现有的IP基础设施来管理蓝牙智能边缘设备。有关蓝牙4.2的更多信息,可从RS获得各种蓝牙模块。
标准:蓝牙4.2核心规格
频率:2.4GHz(ISM)
范围:50-150米(智能/BLE)
数据速率:1Mbps(智能/BLE)
ZigBee像蓝牙一样具有大量的操作基础,尽管传统上在工业环境中也是如此。 ZigBee PRO和ZigBee远程控制(RF4CE)以及其他可用的ZigBee配置文件均基于IEEE802.15.4协议,该协议是以2.4GHz为目标的行业标准无线网络技术,针对的应用程序需要相对不频繁的数据交换,在限制区域内的距离在100米范围内,例如在家庭或建筑物中。
ZigBee/RF4CE在复杂系统中具有一些显着的优势,提供低功耗操作,高安全性,鲁棒性和高可扩展性,具有高节点数量,并且有能力利用M2M和IoT应用中的无线控制和传感器网络。 ZigBee的最新版本是最近推出的3.0版本,它基本上是将各种ZigBee无线标准统一为单一标准。 ZigBee开发的示例产品和套件包括TI的CC2538SF53RTQT ZigBee片上系统集成电路和CC2538 ZigBee开发套件。
标准:基于IEEE802.15.4的ZigBee 3.0
频率:2.4GHz
范围:10-100米
数据速率:250kbps
Z-Wave是一种低功耗射频通信技术,主要用于诸如灯控制器和传感器之类的产品的家庭自动化。针对数据速率高达100kbit/s的小数据数据包的可靠和低延迟通信进行了优化,其工作在1GHz频段,并且不受WiFi和其他无线技术在2.4 GHz范围内的干扰,如蓝牙或ZigBee。它支持全网状网络,而不需要协调器节点,并且是非常可扩展的,可以控制多达232个设备。 Z-Wave使用比其他一些更简单的协议,可以实现更快更简单的开发,但与其他无线技术(如ZigBee等)的多种来源相比,唯一的芯片制造商是Sigma Designs。
标准:Z-Wave Alliance ZAD12837/ITU-T G.9959
频率:900MHz(ISM)
范围:30m
数据速率:9.6/40/100kbit/s
基于IP(Internet Protocol)的技术是6LowPAN(IPv6低功率无线个人区域网络)。 6LowPAN不是像蓝牙或ZigBee这样的IoT应用协议技术,而是一种定义封装和头压缩机制的网络协议。该标准具有频带和物理层的自由度,也可以在多种通信平台上使用,包括以太网,Wi-Fi,802.15.4和sub-1GHz ISM。一个关键的属性是IPv6(互联网协议版本6)堆栈,这是近年来非常重要的介绍,以实现物联网。 IPv6是IPv4的后继者,为世界上每个人提供大约5 x 1028个地址,使世界上任何嵌入式对象或设备都拥有自己的唯一IP地址并连接到互联网。例如,IPv6专为家庭或楼宇自动化设计,提供了一种基本的传输机制,可以通过低功耗无线网络以成本效益的方式生产复杂的控制系统和与设备进行通信。
该标准旨在通过基于IEEE802.15.4的网络发送IPv6数据包,并实施开放IP标准,包括TCP,UDP,HTTP,COAP,MQTT和Websockets,该标准提供端对端可寻址节点,允许路由器将网络连接到IP。 6LowPAN是一种网状网络,具有强大的可扩展性和自愈性。网状路由器设备可以路由指定给其他设备的数据,而主机能够长时间睡眠。这里有6LowPAN的解释,TI提供。
标准:RFC6282
频率:(适用于各种其他网络媒体,包括蓝牙智能(2.4GHz)或ZigBee或低功率射频(亚1GHz)
范围:N/A
数据速率:N/A
线程是一种针对家庭自动化环境的新型基于IP的IPv6网络协议。基于6LowPAN,也喜欢它,它不是像蓝牙或ZigBee这样的IoT应用协议。然而,从应用的角度来看,它主要被设计为WiFi的补充,因为它识别出WiFi对于许多消费者设备而言是有利的,它在家庭自动化设置中使用的限制。
线程组于2014年中推出,免版税协议基于各种标准,包括IEEE802.15.4(作为无线空中接口协议),IPv6和6LoWPAN,并为物联网提供了一种弹性的基于IP的解决方案。 Thread专为从现有的IEEE802.15.4无线芯片供应商(如飞思卡尔和Silicon Labs)工作,Thread支持使用IEEE802.15.4无线电收发器的网状网络,能够处理多达250个具有高级别身份验证和加密的节点。相对简单的软件升级应允许用户在现有的支持IEEE802.15.4的设备上运行线程。
标准:线程,基于IEEE802.15.4和6LowPAN
频率:2.4GHz(ISM)
范围:N/ A
数据速率:N/A
WiFi连接通常是许多开发人员的明显选择,特别是考虑到局域网内家庭环境中WiFi的普及。除了明确指出,现有基础架构广泛,并提供快速的数据传输和处理大量数据的能力,这不需要进一步的解释。
目前,在家庭和许多企业中使用的最常见的WiFi标准是802.11n,其提供了在数百兆比特每秒的严格吞吐量,这对于文件传输是很好的,但对于许多IoT应用来说可能太耗电了。 RS提供了一系列用于构建基于WiFi的应用的RF开发套件。
标准:基于802.11n(今天最常见的用途)
频率:2.4GHz和5GHz频段
范围:约50m
数据速率:最大600 Mbps,但根据所使用的通道频率和天线数量(最新的802.11-ac标准应提供500Mbps至1Gbps),150-200Mbps更为典型。
需要更长距离运行的IoT应用程序可以利用GSM/3G/4G蜂窝通信功能。虽然蜂窝电话显然能够发送大量的数据,特别是对于4G,但对于许多应用来说,费用和功耗将会太高,但是对于传输速度非常低的基于传感器的低带宽数据项目来说,这是非常理想的互联网上的数据量。该领域的一个关键产品是SparqEE系列产品,包括原始的小型CELLv1.0低成本开发板和一系列与Raspberry Pi和Arduino平台一起使用的屏蔽连接板。
标准:GSM/GPRS/EDGE(2G),UMTS/HSPA(3G),LTE(4G)
频率:900/1800/1900/2100MHz
范围:GSM最大35km; HSPA最长200公里
数据速率(典型下载):35-170kps(GPRS),120-384kbps(EDGE),384Kbps-2Mbps(UMTS),600kbps-10Mbps(HSPA),3-10Mbps
NFC(近场通信)是一种技术,能够实现电子设备之间的简单和安全的双向交互,特别适用于智能手机,允许消费者执行非接触式支付交易,访问数字内容和连接电子设备。本质上它扩展了非接触式卡技术的能力,并使设备能够在距离小于4cm的情况下共享信息。此处提供更多信息。
标准:ISO/IEC 18000-3
频率:13.56MHz(ISM)
范围:10厘米
数据速率:100-420kbps
标题另一种广泛的技术是Sigfox,它的范围在WiFi和蜂窝之间。它使用可免费使用的ISM频带,而不需要获取许可证,以便在非常窄的频谱范围内将数据传输到连接对象和从连接对象传输数据。 Sigfox的想法是,对于运行在小型电池上的许多M2M应用程序,只需要低级别的数据传输,则WiFi的范围太短,而蜂窝电话太贵,并且功耗太大。 Sigfox使用一种称为超窄带(UNB)的技术,仅用于处理每秒10至1,000位的低数据传输速度。与5000微瓦相比,蜂窝通信消耗的电量仅为50微瓦,或者可以通过2.5Ah电池提供典型的待机时间20年,而蜂窝电话仅为0.2年。
已经部署在成千上万个连接对象中,该网络目前正在欧洲主要城市推出,其中包括英国的十个城市。该网络提供了一个强大的,功率高效和可扩展的网络,可以与数百万个电池供电设备在几平方公里的区域进行通信,使其适用于预期包括智能电表,病人监视器,安全设备,街道照明和环境传感器。 Sigfox系统使用Silicon Labs等EZRadioPro无线收发器等硅片,为在1GHz以下频段工作的无线网络应用提供行业领先的无线性能,扩展范围和超低功耗。
标准:Sigfox
频率:900MHz
范围:30-50公里(农村环境),3-10公里(城市环境)
数据速率:10-1000bps
与Sigfox相似,在1GHz频段内运行,Neul利用电视白空间频谱的小片,提供高可扩展性,高覆盖率,低功耗和低成本无线网络。系统基于Iceni芯片,其使用白色空间无线电进行通信,以访问高质量的UHF频谱,由于模拟到数字电视转换,现在可用。通信技术称为无重量,是一种为IoT设计的新型广域无线网络技术,与现有的GPRS,3G,CDMA和LTE WAN解决方案大有竞争。数据速率可以是在同一个单一链路上从每秒几位到100kbps的任何数据速率;并且设备可以从2xAA电池消耗少至20至30mA,这意味着在现场10至15年。
标准:Neul
频率:900MHz(ISM),458MHz(英国),470-790MHz(白色空间)
范围:10公里
数据速率:最少可达100kbps
Again在某些方面与Sigfox和Neul类似,LoRaWAN针对广域网(WAN)应用,旨在为具有特定功能的低功率WAN提供支持,以便在IoT,M2M和M2M中支持低成本移动安全双向通信智能城市和工业应用。针对低功耗优化并支持具有数百万和数百万台设备的大型网络,数据速率范围为0.3 kbps至50 kbps。
标准:LoRaWAN
频率:各种
范围:2-5公里(城市环境),15公里(郊区环境)
数据速率:0.3-50 kbps。