洛谷 P4093 [HEOI2016/TJOI2016]序列 CDQ分治优化DP
题目描述
佳媛姐姐过生日的时候,她的小伙伴从某宝上买了一个有趣的玩具送给他。
玩具上有一个数列,数列中某些项的值可能会变化,但同一个时刻最多只有一个值发生变化。现在佳媛姐姐已经研究出了所有变化的可能性,她想请教你,能否选出一个子序列,使得在任意一种变化中,这个子序列都是不降的?请你告诉她这个子序列的最长长度即可。
输入格式
输入的第一行有两个正整数 \(n,m\),分别表示序列的长度和变化的个数。
接下来一行有 \(n\) 个整数,表示这个数列原始的状态。
接下来 \(m\) 行,每行有 \(2\) 个整数 \(x,y\),表示数列的第 \(x\) 项可以变化成 \(y\) 这个值。
输出格式
输出一个整数,表示对应的答案。
输入输出样例
输入 #1
3 4
1 2 3
1 2
2 3
2 1
3 4
输出 #1
3
说明/提示
注意:每种变化最多只有一个值发生变化。
在样例输入中,所有的变化是:
1 2 3
2 2 3
1 3 3
1 1 3
1 2 4
选择子序列为原序列,即在任意一种变化中均为不降子序列。
对于 \(20\%\) 数据,所有数均为正整数,且小于等于 \(300\)。
对于 \(50\%\) 数据,所有数字均为正整数,且小于等于 \(3000\)。
对于 \(100\%\) 数据,所有数字均为正整数,且小于等于 \(10^5\)。\(1\le x\le n\)。
分析
我们设\(min[i]\)为处在位置\(i\)上的数变化得到的最小值,\(max[i]\)为处在位置\(i\)上的数变化得到的最大值,\(f[i]\)为以\(i\)结尾的最长上升子序列的长度
则\(f[i]=max(f[i],f[j]+1),j\
我们会发现这是一个三位偏序问题,可以用\(CDQ\)分治优化
代码
#include
#include
#include
inline int read(){
int x=0,fh=1;
char ch=getchar();
while(ch<'0' || ch>'9'){
if(ch=='-') fh=-1;
ch=getchar();
}
while(ch>='0' && ch<='9'){
x=(x<<1)+(x<<3)+(ch^48);
ch=getchar();
}
return x*fh;
}
const int maxn=1e6+5;
int f[maxn],a[maxn],mmax[maxn],mmin[maxn],tr[maxn],n,m;
int lb(int xx){
return xx&-xx;
}
void ad(int wz,int val){
for(int i=wz;i0;i-=lb(i)){
ans=std::max(tr[i],ans);
}
return ans;
}
void qk(int wz){
for(int i=wz;i>1;
solve(l,mids);
for(int i=l;i<=r;i++) id[i]=i;
std::sort(id+l,id+mids+1,cmp1);
std::sort(id+mids+1,id+r+1,cmp2);
int now=l;
for(int i=mids+1;i<=r;i++){
while(a[id[now]]<=mmin[id[i]] && now<=mids){
ad(mmax[id[now]],f[id[now]]);
now++;
}
f[id[i]]=std::max(f[id[i]],cx(a[id[i]])+1);
tot=std::max(tot,f[id[i]]);
}
for(int i=now-1;i>=l;i--){
qk(mmax[id[i]]);
}
solve(mids+1,r);
}
int main(){
n=read(),m=read();
for(int i=1;i<=n;i++){
a[i]=read();
mmax[i]=mmin[i]=a[i];
f[i]=1;
}
for(int i=1;i<=m;i++){
int aa,bb;
aa=read(),bb=read();
mmax[aa]=std::max(mmax[aa],bb);
mmin[aa]=std::min(mmin[aa],bb);
}
solve(1,n);
printf("%d\n",tot);
return 0;
}