最近在学习Linux USB Composite Framework
的内容,经常看到函数指针跳转来跳转去。比如说会看到很多结构体中的.bind
函数指针,但又不知道他们之间的调用关系。
此时,就可以用dump_stack()
这个函数来追踪函数调用关系。当然,还是要自己尝试学习理解这个框架结构,不然纯粹的知道函数调用关系意义不大。
另外,dump_stack()
可用来定位Kernel Panic和Oop的问题,配合objdump
和addr2line
命令可以定位到哪一行的哪句代码出现问题。
比如说在以下的结构体中都包含.bind
的成员,都同属于Linux USB Composite Framework
的范畴,看多了会不知道谁调用谁,里面各种.bind
的函数成员。
struct usb_composite_driver {
const char *name;
const struct usb_device_descriptor *dev;
struct usb_gadget_strings **strings;
enum usb_device_speed max_speed;
unsigned needs_serial:1;
int (*bind)(struct usb_composite_dev *cdev);
int (*unbind)(struct usb_composite_dev *);
void (*disconnect)(struct usb_composite_dev *);
/* global suspend hooks */
void (*suspend)(struct usb_composite_dev *);
void (*resume)(struct usb_composite_dev *);
struct usb_gadget_driver gadget_driver;
};
struct usb_gadget_driver {
char *function;
enum usb_device_speed max_speed;
int (*bind)(struct usb_gadget *gadget,
struct usb_gadget_driver *driver);
void (*unbind)(struct usb_gadget *);
int (*setup)(struct usb_gadget *,
const struct usb_ctrlrequest *);
void (*disconnect)(struct usb_gadget *);
void (*suspend)(struct usb_gadget *);
void (*resume)(struct usb_gadget *);
/* FIXME support safe rmmod */
struct device_driver driver;
};
struct usb_function {
const char *name;
struct usb_gadget_strings **strings;
struct usb_descriptor_header **fs_descriptors;
struct usb_descriptor_header **hs_descriptors;
struct usb_descriptor_header **ss_descriptors;
struct usb_configuration *config;
/* REVISIT: bind() functions can be marked __init, which
* makes trouble for section mismatch analysis. See if
* we can't restructure things to avoid mismatching.
* Related: unbind() may kfree() but bind() won't...
*/
/* configuration management: bind/unbind */
int (*bind)(struct usb_configuration *,
struct usb_function *);
void (*unbind)(struct usb_configuration *,
struct usb_function *);
void (*free_func)(struct usb_function *f);
struct module *mod;
/* runtime state management */
int (*set_alt)(struct usb_function *,
unsigned interface, unsigned alt);
int (*get_alt)(struct usb_function *,
unsigned interface);
void (*disable)(struct usb_function *);
int (*setup)(struct usb_function *,
const struct usb_ctrlrequest *);
void (*suspend)(struct usb_function *);
void (*resume)(struct usb_function *);
/* USB 3.0 additions */
int (*get_status)(struct usb_function *);
int (*func_suspend)(struct usb_function *,
u8 suspend_opt);
/* private: */
/* internals */
struct list_head list;
DECLARE_BITMAP(endpoints, 32);
const struct usb_function_instance *fi;
};
int usb_add_config(struct usb_composite_dev *cdev,
struct usb_configuration *config,
int (*bind)(struct usb_configuration *))
为了理清上述函数的调用关系,我在composite_bind()
中调用dump_stack()
,代码如下:
static int composite_bind(struct usb_gadget *gadget,
struct usb_gadget_driver *gdriver)
{
struct usb_composite_dev *cdev;
struct usb_composite_driver *composite = to_cdriver(gdriver);
int status = -ENOMEM;
printk("[xxx-dump] in %s, line = %d, dump start\n", __func__, __LINE__);
dump_stack();
printk("[xxx-dump] in %s, line = %d, dump end\n", __func__, __LINE__);
cdev = kzalloc(sizeof *cdev, GFP_KERNEL);
……
}
程序运行后得到的函数调用栈如下(当然这是USB Composite的内容,我这里是插入了一个iPhone,使用了CarPlay功能):
[ 35.571746] 1111111111111111111
[ 35.574990] [xxx-dump] in composite_bind, line = 1675, dump start
[ 35.581099] CPU: 0 PID: 115 Comm: NHPnpReceiverTD Tainted: P O 3.14.19 #1
[ 35.588779] [] (unwind_backtrace) from [] (show_stack+0x10/0x14)
[ 35.596540] [] (show_stack) from [] (dump_stack+0x80/0x90)
[ 35.603793] [] (dump_stack) from [] (composite_bind+0x28/0x1b0 [libcomposite])
[ 35.612764] [] (composite_bind [libcomposite]) from [] (udc_bind_to_driver+0x50/0x110 [udc_core])
[ 35.623365] [] (udc_bind_to_driver [udc_core]) from [] (usb_gadget_probe_driver+0x70/0xcc [udc_core])
[ 35.634309] [] (usb_gadget_probe_driver [udc_core]) from [] (do_one_initcall+0xd4/0x17c)
[ 35.644133] [] (do_one_initcall) from [] (load_module+0x1bec/0x2140)
[ 35.652225] [] (load_module) from [] (SyS_init_module+0xa8/0x110)
[ 35.660062] [] (SyS_init_module) from [] (ret_fast_syscall+0x0/0x30)
[ 35.668148] [xxx-dump] in composite_bind, line = 1677, dump end
很明显,我们可以通过这个调用栈的信息知道composite_bind()
的调用关系(从下往上)如下:
ret_fast_syscall -> SyS_init_module -> load_module -> do_one_initcall ->
usb_gadget_probe_driver -> udc_bind_to_driver -> composite_bind ->
dump_stack -> show_stack -> unwind_backtrace
第1行是module_init()
相关的调用,也就是说调用了module_init()
加载某个驱动。更深入的,我们知道是注册一个USB Composite Driver
的过程。
第2行可以直观的看到调用composite_bind()
的是udc_bind_to_driver()
函数。
第3行是dump_stack()
的调用关系。
本文只分析如下四条打印语句,从下往上逐条分析。
[ 35.596540] [<c0012288>] (show_stack) from [<c047d8a8>] (dump_stack+0x80/0x90)
[ 35.603793] [<c047d8a8>] (dump_stack) from [<bf045f60>] (composite_bind+0x28/0x1b0 [libcomposite])
[ 35.612764] [<bf045f60>] (composite_bind [libcomposite]) from [<bf0236a4>] (udc_bind_to_driver+0x50/0x110 [udc_core])
[ 35.623365] [<bf0236a4>] (udc_bind_to_driver [udc_core]) from [<bf023f24>] (usb_gadget_probe_driver+0x70/0xcc [udc_core])
在打印语句中, [libcomposite]
和 [udc_core]
,标记这是ko文件 libcomposite.ko
和 udc_core.ko
。
如果没有标记,说明这是build-in的,只需反汇编vmlinux即可。
接下来我们就将这两个ko文件和vmlinux文件 objdump
出来。在Kernel目录下执行以下命令进行反汇编(objdump属于交叉编译工具,在交叉编译工具链里面可以找到)分别得到composite.log、udc-core.log、vmlinux.log三个文件:
#../prebuilts/gcc/linux-x86/arm/arm-linux-gnueabihf/bin/arm-linux-gnueabihf-objdump -d -l -f -g -S drivers/usb/gadget/libcomposite.ko > composite.log
#../prebuilts/gcc/linux-x86/arm/arm-linux-gnueabihf/bin/arm-linux-gnueabihf-objdump -d -l -f -g -S drivers/usb/gadget/udc-core.ko > udc-core.log
#../prebuilts/gcc/linux-x86/arm/arm-linux-gnueabihf/bin/arm-linux-gnueabihf-objdump -d -l -f -g -S vmlinux > vmlinux.log
dump_stack()
格式分析[<bf0236a4>] (udc_bind_to_driver [udc_core]) from [<bf023f24>] (usb_gadget_probe_driver+0x70/0xcc [udc_core])
从上面的信息,我们至少可以获得以下信息:
这个是编译进udc-core的ko文件的,因此我们要查看反汇编出来的udc-core.log
文件;
在 0xbf023f24 的地址(usb_gadget_probe_driver()
函数的地址偏移0x70)会调用 udc_bind_to_driver()
函数。因此我们可以得出 usb_gadget_probe_driver()
函数的入口地址为 0xbf023f24-0x70 = 0xbf023eb4
usb_gadget_probe_driver()
函数总的偏移量为0xcc,即范围为:0xbf023eb4 ~ 0xbf023f80
查看 udc-core.log
文件,搜索usb_gadget_probe_driver()
函数的位置:
00000eb4 :
usb_gadget_probe_driver():
/home/victor/work/xxx_project/kernel-xxx/drivers/usb/gadget/udc-core.c:625
return ret;
}
EXPORT_SYMBOL_GPL(udc_attach_driver);
int usb_gadget_probe_driver(struct usb_gadget_driver *driver)
{
eb4: e92d4038 push {r3, r4, r5, lr}
/home/victor/work/xxx_project/kernel-xxx/drivers/usb/gadget/udc-core.c:629
struct usb_udc *udc = NULL;
int ret;
if (!driver || !driver->bind || !driver->setup)
eb8: e2505000 subs r5, r0, #0
ebc: 0a000028 beq f64 0xb0>
/home/victor/work/xxx_project/kernel-xxx/drivers/usb/gadget/udc-core.c:629 (discriminator 1)
ec0: e5953008 ldr r3, [r5, #8]
ec4: e3530000 cmp r3, #0
ec8: 0a000025 beq f64 0xb0>
ecc: e5953010 ldr r3, [r5, #16]
ed0: e3530000 cmp r3, #0
ed4: 0a000022 beq f64 0xb0>
/home/victor/work/xxx_project/kernel-xxx/drivers/usb/gadget/udc-core.c:632
return -EINVAL;
mutex_lock(&udc_lock);
ed8: e3004000 movw r4, #0
edc: e3404000 movt r4, #0
ee0: e1a00004 mov r0, r4
ee4: ebfffffe bl 0
/home/victor/work/xxx_project/kernel-xxx/drivers/usb/gadget/udc-core.c:633
list_for_each_entry(udc, &udc_list, list) {
ee8: e1a02004 mov r2, r4
eec: e5b23018 ldr r3, [r2, #24]!
ef0: e1530002 cmp r3, r2
ef4: e24300f8 sub r0, r3, #248 ; 0xf8
ef8: 1a000004 bne f10 0x5c>
efc: ea00000e b f3c 0x88>
f00: e59030f8 ldr r3, [r0, #248] ; 0xf8
f04: e1530002 cmp r3, r2
f08: e24300f8 sub r0, r3, #248 ; 0xf8
f0c: 0a00000a beq f3c 0x88>
/home/victor/work/xxx_project/kernel-xxx/drivers/usb/gadget/udc-core.c:635
/* For now we take the first one */
if (!udc->driver)
f10: e51330f8 ldr r3, [r3, #-248] ; 0xf8
f14: e3530000 cmp r3, #0
f18: 1afffff8 bne f00 0x4c>
/home/victor/work/xxx_project/kernel-xxx/drivers/usb/gadget/udc-core.c:643
pr_debug("couldn't find an available UDC\n");
mutex_unlock(&udc_lock);
return -ENODEV;
found:
ret = udc_bind_to_driver(udc, driver);
f1c: e1a01005 mov r1, r5
f20: ebfffdcb bl 654
f24: e1a04000 mov r4, r0
/home/victor/work/xxx_project/kernel-xxx/drivers/usb/gadget/udc-core.c:644
mutex_unlock(&udc_lock);
f28: e3000000 movw r0, #0
f2c: e3400000 movt r0, #0
f30: ebfffffe bl 0
/home/victor/work/xxx_project/kernel-xxx/drivers/usb/gadget/udc-core.c:645
return ret;
对于这样格式的内容,表示看不懂。但从00000eb4
这句话可以推测usb_gadget_probe_driver()
函数在udc-core.ko的入口地址为:0x00000eb4。
0x00000eb4 与前面推测的 0xbf023eb4总是偏移0xbf023000。我猜想,0xbf023000的偏移量正是udc-core.ko相对整个kernel的偏移量。
所以要找到调用 udc_bind_to_driver()
的地方,那么其偏移量相对于udc-core.ko应为0xf24。
为了找到调用的该函数的所在行,我们使用 addr2line 工具将地址转换为行号得到:
#../prebuilts/gcc/linux-x86/arm/arm-linux-gnueabihf/bin/arm-linux-gnueabihf-addr2line -e drivers/usb/gadget/udc-core.ko 0xf24
/home/victor/work/xxx_project/kernel-xxx/drivers/usb/gadget/udc-core.c:643
#../prebuilts/gcc/linux-x86/arm/arm-linux-gnueabihf/bin/arm-linux-gnueabihf-addr2line -e drivers/usb/gadget/udc-core.ko 0xeb4
/home/victor/work/xxx_project/kernel-xxx/drivers/usb/gadget/udc-core.c:625
因此就可以知道在usb_gadget_probe_driver()
函数的入口在 udc-core.c
第625行,调用udc_bind_to_driver()
在 udc-core.c
第643行。查看代码跟解析出来的一致:
按照同样的方法再来解析下面的log,可以得到信息:
[] (composite_bind [libcomposite]) from [] (udc_bind_to_driver+0x50/0x110 [udc_core])
这个是编译进udc-core的ko文件的,因此我们要查看udc-core.log文件;
在 0xbf0236a4(在udc-core.ko的地址为0x000006a4)的地址(偏移0x50)会调用 composite_bind()
函数。因此我们可以得出 udc_bind_to_driver()
函数的地址为 0xbf0236a4-0x50 = 0xbf023654(在udc-core.ko的地址为0x00000654);
udc_bind_to_driver()
函数总的偏移量为0x110,即范围为:0xbf023654 ~ 0xbf023764
使用addr2line将地址转换为行号:
#../prebuilts/gcc/linux-x86/arm/arm-linux-gnueabihf/bin/arm-linux-gnueabihf-addr2line -e drivers/usb/gadget/udc-core.ko 0x6a4
/home/victor/work/xxx_project/kernel-xxx/drivers/usb/gadget/udc-core.c:577
#../prebuilts/gcc/linux-x86/arm/arm-linux-gnueabihf/bin/arm-linux-gnueabihf-addr2line -e drivers/usb/gadget/udc-core.ko 0x654
/home/victor/work/xxx_project/kernel-xxx/drivers/usb/gadget/udc-core.c:566
就可以知道udc_bind_to_driver()
函数入口在udc-core.c
第566行,调用composite_bind()
函数在udc-core.c
第577行。
解析以下log:
[ 35.603793] [<c047d8a8>] (dump_stack) from [<bf045f60>] (composite_bind+0x28/0x1b0 [libcomposite])
这个是编译进libcomposite的ko文件的,因此我们要查看libcomposite.log文件;
查看composite.log文件并搜索composite_bind
得到其地址为0x00002f38,因此我们可以知道libcomposite.ko相对整个kernel偏移0xbf045f38 - 0x00002f38 = 0xbf043000,查看 libcomposite.log得到:
00002f38 <composite_bind>:
composite_bind():
/home/victor/work/xxx_project/kernel-xxx/drivers/usb/gadget/composite.c:1671
device_remove_file(&cdev->gadget->dev, &dev_attr_suspended);
}
composite_bind()
函数起始地址0x00002f38中偏移0x28,即0x00002f60会去调用dump_stack()
函数。使用 addr2line工具:
#../prebuilts/gcc/linux-x86/arm/arm-linux-gnueabihf/bin/arm-linux-gnueabihf-addr2line -e drivers/usb/gadget/libcomposite.ko 0x2f60
/home/victor/work/xxx_project/kernel-xxx/drivers/usb/gadget/composite.c:1677
#../prebuilts/gcc/linux-x86/arm/arm-linux-gnueabihf/bin/arm-linux-gnueabihf-addr2line -e drivers/usb/gadget/libcomposite.ko 0x2f38
/home/victor/work/xxx_project/kernel-xxx/drivers/usb/gadget/composite.c:1671
很明显,这就是我添加dump_stack()
的位置,追本溯源终于找到自己熟悉的地方了。
再解析以下log:
[ 35.596540] [<c0012288>] (show_stack) from [<c047d8a8>] (dump_stack+0x80/0x90)
这些是build-in的,直接在vmlinux.ko就可以找到他们的地址。
#../prebuilts/gcc/linux-x86/arm/arm-linux-gnueabihf/bin/arm-linux-gnueabihf-addr2line -e vmlinux 0xc047d8a8
/home/victor/work/xxx_project/kernel-xxx/lib/dump_stack.c:52
#../prebuilts/gcc/linux-x86/arm/arm-linux-gnueabihf/bin/arm-linux-gnueabihf-addr2line -e vmlinux 0xc047d828
/home/victor/work/xxx_project/kernel-xxx/lib/dump_stack.c:27
http://einon.net/DocBook/kernel-api/API-vsnprintf.html
http://blog.csdn.net/liyongming1982/article/details/16349769
http://blog.csdn.net/liyongming1982/article/details/16349875