1. Matlab资源
(1) Camera Calibration Toolbox for Matlab 工具箱
下载链接:http://www.vision.caltech.edu/bouguetj/calib_doc/
2. Matlab内建工具,如下图所示:
3.本人基于OpenCV实现了相机标定和立体标定的代码,如下(注意,本代码是在Opencv相机标定的Demo上进行修改,但是,Opencv的Demo已经和当前的3.1版本的不适应,特别是鱼眼相机标定方法,Opencv自带的Demo的配置文件不满足鱼眼相机标定相关的参数配置,详细见下面代码和说明)
3.1 Opencv相机标定Demo
/*
* Author: HSW
* Date: 2017-9-16
* Conventional Camera / Fisheye Camera calibrate
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include "singlecameracalib.h"
using namespace std;
using namespace cv;
// 单相机标定结果
typedef struct singleCameraCalibResult
{
Mat cameraMatrix;
Mat distCoeffs;
void saveCameraParams(string savePath)
{
FileStorage fs(savePath, FileStorage::WRITE);
if(fs.isOpened())
{
fs << "cameraMatrix" << cameraMatrix
<< "distCoeffs" << distCoeffs;
fs.release();
}
else
{
cout << "Save Camera Params. Failed !" << endl;
}
}
}singleCameraCalibResult;
//立体标定结果
typedef struct stereoCameraCalibResult
{
singleCameraCalibResult left;
singleCameraCalibResult right;
Mat R;
Mat T;
void saveStereoParams(string savePath)
{
FileStorage fs(savePath, FileStorage::WRITE);
if(fs.isOpened())
{
fs << "cameraMatrixL" << left.cameraMatrix
<< "distCoeffsL" << left.distCoeffs
<< "cameraMatrixR" << right.cameraMatrix
<< "distCoeffsR" << right.distCoeffs
<< "R" << R
<< "T" << T;
fs.release();
}
else
{
cout << "Save Camera Params. Failed !" << endl;
}
}
}stereoCameraCalibResult;
enum { SINGLECAMERACALIB, STEREOCALIB};
enum { DETECTION = 0, CAPTURING = 1, CALIBRATED = 2 };
const int calibMode = STEREOCALIB; //标定的模式,单相机标定、立体标定
singleCameraCalibResult singleResult;
stereoCameraCalibResult stereoResult;
static inline void read(const FileNode& node, Settings& x, const Settings& default_value = Settings())
{
if(node.empty())
x = default_value;
else
x.read(node);
}
static inline void write(FileStorage& fs, const String&, const Settings& s )
{
s.write(fs);
}
//! [compute_errors]
static double computeReprojectionErrors( const vector >& objectPoints,
const vector >& imagePoints,
const vector& rvecs, const vector& tvecs,
const Mat& cameraMatrix , const Mat& distCoeffs,
vector& perViewErrors, bool fisheye)
{
vector imagePoints2;
size_t totalPoints = 0;
double totalErr = 0, err;
perViewErrors.resize(objectPoints.size());
for(size_t i = 0; i < objectPoints.size(); ++i )
{
if (fisheye)
{
fisheye::projectPoints(objectPoints[i], imagePoints2, rvecs[i], tvecs[i], cameraMatrix,
distCoeffs);
}
else
{
projectPoints(objectPoints[i], rvecs[i], tvecs[i], cameraMatrix, distCoeffs, imagePoints2);
}
err = norm(imagePoints[i], imagePoints2, NORM_L2);
size_t n = objectPoints[i].size();
perViewErrors[i] = (float) std::sqrt(err*err/n);
totalErr += err*err;
totalPoints += n;
}
return std::sqrt(totalErr/totalPoints);
}
//! [compute_errors]
//! [board_corners]
static void calcBoardCornerPositions(Size boardSize, float squareSize, vector& corners,
Settings::Pattern patternType /*= Settings::CHESSBOARD*/)
{
corners.clear();
switch(patternType)
{
case Settings::CHESSBOARD:
case Settings::CIRCLES_GRID:
for( int i = 0; i < boardSize.height; ++i )
for( int j = 0; j < boardSize.width; ++j )
corners.push_back(Point3f(j*squareSize, i*squareSize, 0));
break;
case Settings::ASYMMETRIC_CIRCLES_GRID:
for( int i = 0; i < boardSize.height; i++ )
for( int j = 0; j < boardSize.width; j++ )
corners.push_back(Point3f((2*j + i % 2)*squareSize, i*squareSize, 0));
break;
default:
break;
}
}
//! [board_corners]
//! [board_corners 2]
static void calcBoardCornerPositions2(Size boardSize, float squareSize, vector& corners,
Settings::Pattern patternType /*= Settings::CHESSBOARD*/)
{
corners.clear();
switch(patternType)
{
case Settings::CHESSBOARD:
case Settings::CIRCLES_GRID:
for( int i = 0; i < boardSize.height; ++i )
for( int j = 0; j < boardSize.width; ++j )
corners.push_back(Point3d(j*squareSize, i*squareSize, 0));
break;
case Settings::ASYMMETRIC_CIRCLES_GRID:
for( int i = 0; i < boardSize.height; i++ )
for( int j = 0; j < boardSize.width; j++ )
corners.push_back(Point3d((2*j + i % 2)*squareSize, i*squareSize, 0));
break;
default:
break;
}
}
//! [board_corners 2]
static bool runCalibration( Settings& s, Size& imageSize, Mat& cameraMatrix, Mat& distCoeffs,
vector > imagePoints, vector& rvecs, vector& tvecs,
vector& reprojErrs, double& totalAvgErr)
{
//! [fixed_aspect]
cameraMatrix = Mat::eye(3, 3, CV_64F);
if( s.flag & CALIB_FIX_ASPECT_RATIO )
{
cameraMatrix.at(0,0) = s.aspectRatio;
}
//! [fixed_aspect]
if (s.useFisheye)
{
distCoeffs = Mat::zeros(4, 1, CV_64F);
}
else
{
distCoeffs = Mat::zeros(8, 1, CV_64F);
}
vector > objectPoints(1);
calcBoardCornerPositions(s.boardSize, s.squareSize, objectPoints[0], s.calibrationPattern);
objectPoints.resize(imagePoints.size(),objectPoints[0]);
//Find intrinsic and extrinsic camera parameters
double rms;
if (s.useFisheye)
{
//Mat _rvecs, _tvecs;
std::vector _rvecs;
std::vector _tvecs;
rms = fisheye::calibrate(objectPoints, imagePoints, imageSize, cameraMatrix, distCoeffs, _rvecs,
_tvecs, s.flag, cv::TermCriteria(3, 20, 1e-6));
for(int i = 0; i < (int)(objectPoints.size()); ++i)
{
Mat tempR = Mat::zeros(Size(1,3), CV_32FC1);
Mat tempT = Mat::zeros(Size(1,3), CV_32FC1);
Vec3f vec = _rvecs[i];
tempR.at(0,0) = vec[0];
tempR.at(1,1) = vec[1];
tempR.at(2,2) = vec[2];
vec = _tvecs[i];
tempT.at(0,0) = vec[0];
tempT.at(1,1) = vec[1];
tempT.at(2,2) = vec[2];
rvecs.push_back(tempR);
tvecs.push_back(tempT);
}
}
else
{
rms = calibrateCamera(objectPoints, imagePoints, imageSize, cameraMatrix, distCoeffs, rvecs, tvecs,
s.flag);
}
cout << "Re-projection error reported by calibrateCamera: "<< rms << endl;
bool ok = checkRange(cameraMatrix) && checkRange(distCoeffs);
totalAvgErr = computeReprojectionErrors(objectPoints, imagePoints, rvecs, tvecs, cameraMatrix,
distCoeffs, reprojErrs, s.useFisheye);
return ok;
}
// Print camera parameters to the output file
static void saveCameraParams( Settings& s, Size& imageSize, Mat& cameraMatrix, Mat& distCoeffs,
const vector& rvecs, const vector& tvecs,
const vector& reprojErrs, const vector >& imagePoints,
double totalAvgErr )
{
FileStorage fs( s.outputFileName, FileStorage::WRITE );
time_t tm;
time( &tm );
struct tm *t2 = localtime( &tm );
char buf[1024];
strftime( buf, sizeof(buf), "%c", t2 );
fs << "calibration_time" << buf;
if( !rvecs.empty() || !reprojErrs.empty() )
fs << "nr_of_frames" << (int)std::max(rvecs.size(), reprojErrs.size());
fs << "image_width" << imageSize.width;
fs << "image_height" << imageSize.height;
fs << "board_width" << s.boardSize.width;
fs << "board_height" << s.boardSize.height;
fs << "square_size" << s.squareSize;
if( s.flag & CALIB_FIX_ASPECT_RATIO )
fs << "fix_aspect_ratio" << s.aspectRatio;
if (s.flag)
{
std::stringstream flagsStringStream;
if (s.useFisheye)
{
flagsStringStream << "flags:"
<< (s.flag & fisheye::CALIB_FIX_SKEW ? " +fix_skew" : "")
<< (s.flag & fisheye::CALIB_FIX_K1 ? " +fix_k1" : "")
<< (s.flag & fisheye::CALIB_FIX_K2 ? " +fix_k2" : "")
<< (s.flag & fisheye::CALIB_FIX_K3 ? " +fix_k3" : "")
<< (s.flag & fisheye::CALIB_FIX_K4 ? " +fix_k4" : "")
<< (s.flag & fisheye::CALIB_RECOMPUTE_EXTRINSIC ? " +recompute_extrinsic" : "");
}
else
{
flagsStringStream << "flags:"
<< (s.flag & CALIB_USE_INTRINSIC_GUESS ? " +use_intrinsic_guess" : "")
<< (s.flag & CALIB_FIX_ASPECT_RATIO ? " +fix_aspectRatio" : "")
<< (s.flag & CALIB_FIX_PRINCIPAL_POINT ? " +fix_principal_point" : "")
<< (s.flag & CALIB_ZERO_TANGENT_DIST ? " +zero_tangent_dist" : "")
<< (s.flag & CALIB_FIX_K1 ? " +fix_k1" : "")
<< (s.flag & CALIB_FIX_K2 ? " +fix_k2" : "")
<< (s.flag & CALIB_FIX_K3 ? " +fix_k3" : "")
<< (s.flag & CALIB_FIX_K4 ? " +fix_k4" : "")
<< (s.flag & CALIB_FIX_K5 ? " +fix_k5" : "");
}
//fs.writeComment(flagsStringStream.str());
}
fs << "flags" << s.flag;
fs << "fisheye_model" << s.useFisheye;
fs << "camera_matrix" << cameraMatrix;
fs << "distortion_coefficients" << distCoeffs;
fs << "avg_reprojection_error" << totalAvgErr;
if (s.writeExtrinsics && !reprojErrs.empty())
fs << "per_view_reprojection_errors" << Mat(reprojErrs);
if(s.writeExtrinsics && !rvecs.empty() && !tvecs.empty() )
{
CV_Assert(rvecs[0].type() == tvecs[0].type());
Mat bigmat((int)rvecs.size(), 6, CV_MAKETYPE(rvecs[0].type(), 1));
bool needReshapeR = rvecs[0].depth() != 1 ? true : false;
bool needReshapeT = tvecs[0].depth() != 1 ? true : false;
for( size_t i = 0; i < rvecs.size(); i++ )
{
Mat r = bigmat(Range(int(i), int(i+1)), Range(0,3));
Mat t = bigmat(Range(int(i), int(i+1)), Range(3,6));
if(needReshapeR)
rvecs[i].reshape(1, 1).copyTo(r);
else
{
//*.t() is MatExpr (not Mat) so we can use assignment operator
CV_Assert(rvecs[i].rows == 3 && rvecs[i].cols == 1);
r = rvecs[i].t();
}
if(needReshapeT)
tvecs[i].reshape(1, 1).copyTo(t);
else
{
CV_Assert(tvecs[i].rows == 3 && tvecs[i].cols == 1);
t = tvecs[i].t();
}
}
//fs.writeComment("a set of 6-tuples (rotation vector + translation vector) for each view");
fs << "extrinsic_parameters" << bigmat;
}
if(s.writePoints && !imagePoints.empty() )
{
Mat imagePtMat((int)imagePoints.size(), (int)imagePoints[0].size(), CV_32FC2);
for( size_t i = 0; i < imagePoints.size(); i++ )
{
Mat r = imagePtMat.row(int(i)).reshape(2, imagePtMat.cols);
Mat imgpti(imagePoints[i]);
imgpti.copyTo(r);
}
fs << "image_points" << imagePtMat;
}
}
//! [run_and_save]
bool runCalibrationAndSave(Settings& s, Size imageSize, Mat& cameraMatrix, Mat& distCoeffs,
vector > imagePoints)
{
vector rvecs, tvecs;
rvecs.reserve(100);
tvecs.reserve(100);
vector reprojErrs;
double totalAvgErr = 0;
bool ok = runCalibration(s, imageSize, cameraMatrix, distCoeffs, imagePoints, rvecs, tvecs, reprojErrs,
totalAvgErr);
cout << (ok ? "Calibration succeeded" : "Calibration failed")
<< ". avg re projection error = " << totalAvgErr << endl;
if (ok)
{
// 保存到对象中
cameraMatrix.copyTo(s.cameraMatrix);
distCoeffs.copyTo(s.distCoeffs);
s.reprojErrs = reprojErrs;
s.totalAvgErr = totalAvgErr;
s.imagePoints = imagePoints;
// 保存到文件
saveCameraParams(s, imageSize, cameraMatrix, distCoeffs, rvecs, tvecs, reprojErrs, imagePoints, totalAvgErr);
}
return ok;
}
//! [run_and_save]
int singleCameraCalib(const string inputSettingsFile, Settings& s)
{
//! [file_read]
FileStorage fs(inputSettingsFile, FileStorage::READ); // Read the settings
if (!fs.isOpened())
{
cout << "Could not open the configuration file: \"" << inputSettingsFile << "\"" << endl;
return -1;
}
fs["Settings"] >> s;
fs.release(); // close Settings file
//! [file_read]
if (!s.goodInput)
{
cout << "Invalid input detected. Application stopping. " << endl;
return -1;
}
vector > imagePoints;
Mat cameraMatrix, distCoeffs;
Size imageSize;
int mode = s.inputType == Settings::IMAGE_LIST ? CAPTURING : DETECTION;
clock_t prevTimestamp = 0;
const Scalar RED(0,0,255), GREEN(0,255,0);
const char ESC_KEY = 27;
Mat view;
//! [get_input]
for(;;)
{
bool blinkOutput = false;
view = s.nextImage();
//----- If no more image, or got enough, then stop calibration and show result -------------
if( mode == CAPTURING && imagePoints.size() >= (size_t)s.nrFrames )
{
if( runCalibrationAndSave(s, imageSize, cameraMatrix, distCoeffs, imagePoints))
mode = CALIBRATED;
else
mode = DETECTION;
}
if(view.empty()) // If there are no more images stop the loop
{
// if calibration threshold was not reached yet, calibrate now
if( mode != CALIBRATED && !imagePoints.empty() )
{
runCalibrationAndSave(s, imageSize, cameraMatrix, distCoeffs, imagePoints);
}
break;
}
//! [get_input]
imageSize = view.size(); // Format input image.
if( s.flipVertical )
{
flip( view, view, 0 );
}
//! [find_pattern]
vector pointBuf;
bool found;
int chessBoardFlags = CALIB_CB_ADAPTIVE_THRESH | CALIB_CB_NORMALIZE_IMAGE;
if(!s.useFisheye)
{
// fast check erroneously fails with high distortions like fisheye
chessBoardFlags |= CALIB_CB_FAST_CHECK;
}
switch( s.calibrationPattern ) // Find feature points on the input format
{
case Settings::CHESSBOARD:
found = findChessboardCorners( view, s.boardSize, pointBuf, chessBoardFlags);
break;
case Settings::CIRCLES_GRID:
found = findCirclesGrid( view, s.boardSize, pointBuf );
break;
case Settings::ASYMMETRIC_CIRCLES_GRID:
found = findCirclesGrid( view, s.boardSize, pointBuf, CALIB_CB_ASYMMETRIC_GRID );
break;
default:
found = false;
break;
}
//! [find_pattern]
//! [pattern_found]
if ( found) // If done with success,
{
// improve the found corners' coordinate accuracy for chessboard
if( s.calibrationPattern == Settings::CHESSBOARD)
{
Mat viewGray;
if(view.channels() == 3)
{
cvtColor(view, viewGray, COLOR_BGR2GRAY);
}
else
{
view.copyTo(viewGray);
}
cornerSubPix( viewGray, pointBuf, Size(11,11),
Size(-1,-1), TermCriteria( TermCriteria::EPS+TermCriteria::COUNT, 30, 0.1 ));
}
// For camera only take new samples after delay time
if( mode == CAPTURING &&
(!s.inputCapture.isOpened() || clock() - prevTimestamp > s.delay*1e-3*CLOCKS_PER_SEC) )
{
imagePoints.push_back(pointBuf);
prevTimestamp = clock();
blinkOutput = s.inputCapture.isOpened();
}
// Draw the corners.
drawChessboardCorners( view, s.boardSize, Mat(pointBuf), found );
}
//! [pattern_found]
//----------------------------- Output Text ------------------------------------------------
//! [output_text]
string msg = (mode == CAPTURING) ? "100/100" :
mode == CALIBRATED ? "Calibrated" : "Press 'g' to start";
int baseLine = 0;
Size textSize = getTextSize(msg, 1, 1, 1, &baseLine);
Point textOrigin(view.cols - 2*textSize.width - 10, view.rows - 2*baseLine - 10);
if( mode == CAPTURING )
{
if(s.showUndistorsed)
msg = format( "%d/%d Undist", (int)imagePoints.size(), s.nrFrames );
else
msg = format( "%d/%d", (int)imagePoints.size(), s.nrFrames );
}
putText( view, msg, textOrigin, 1, 1, mode == CALIBRATED ? GREEN : RED);
if( blinkOutput )
{
bitwise_not(view, view);
}
//! [output_text]
//------------------------- Video capture output undistorted ------------------------------
//! [output_undistorted]
if( mode == CALIBRATED && s.showUndistorsed )
{
Mat temp = view.clone();
undistort(temp, view, cameraMatrix, distCoeffs);
}
//! [output_undistorted]
//------------------------------ Show image and check for input commands -------------------
//! [await_input]
imshow("Image View", view);
char key = (char)waitKey(s.inputCapture.isOpened() ? 50 : s.delay);
if( key == ESC_KEY )
break;
if( key == 'u' && mode == CALIBRATED )
{
s.showUndistorsed = !s.showUndistorsed;
}
if( s.inputCapture.isOpened() && key == 'g' )
{
mode = CAPTURING;
imagePoints.clear();
}
//! [await_input]
}
// -----------------------Show the undistorted image for the image list ------------------------
//! [show_results]
if( s.inputType == Settings::IMAGE_LIST && s.showUndistorsed )
{
Mat view, rview, map1, map2;
if (s.useFisheye)
{
Mat newCamMat;
fisheye::estimateNewCameraMatrixForUndistortRectify(cameraMatrix, distCoeffs, imageSize,
Matx33d::eye(), newCamMat, 1);
fisheye::initUndistortRectifyMap(cameraMatrix, distCoeffs, Matx33d::eye(), newCamMat, imageSize,
CV_16SC2, map1, map2);
}
else
{
initUndistortRectifyMap(
cameraMatrix, distCoeffs, Mat(),
getOptimalNewCameraMatrix(cameraMatrix, distCoeffs, imageSize, 1, imageSize, 0), imageSize,
CV_16SC2, map1, map2);
}
for(size_t i = 0; i < s.imageList.size(); i++ )
{
view = imread(s.imageList[i], 1);
if(view.empty())
continue;
remap(view, rview, map1, map2, INTER_LINEAR);
imshow("Image View", rview);
char c = (char)waitKey(1000);
if( c == ESC_KEY || c == 'q' || c == 'Q' )
break;
}
}
//! [show_results]
return 0;
}
int sameSettings(Settings settingsLeft, Settings settingsRight)
{
//左右相机标定板的物理特性配置不同时,不进行立体标定
if((settingsLeft.boardSize.width != settingsRight.boardSize.width)
||(settingsLeft.boardSize.height != settingsRight.boardSize.height)
||(settingsLeft.squareSize != settingsRight.squareSize)
||(settingsLeft.calibrationPattern != settingsRight.calibrationPattern)
|| (settingsLeft.useFisheye ^ settingsRight.useFisheye))
{
return -1;
}
return 0;
}
int main()
{
if(calibMode == SINGLECAMERACALIB)
{
const string inputSettingsFile = "singleCalib\\inputSettingFile.xml";
const string calibResultSaveFile = "singleCalib\\calibResult.yml";
Settings s;
if(singleCameraCalib(inputSettingsFile, s))
{
cout << "Single Camera Calibrate Failed!" << endl;
}
else
{
cout << "Camera Calib Params Details Have Saved to File: " << s.outputFileName << endl;
}
// 保存标定结果
singleResult.cameraMatrix = s.cameraMatrix;
singleResult.distCoeffs = s.distCoeffs;
singleResult.saveCameraParams(calibResultSaveFile);
}
else if(calibMode == STEREOCALIB)
{
// 立体标定只支持图片序列
const string inputSettingFileLeft = "stereoCalib\\inputSettingFileLeft.xml";
const string inputSettingFileRight = "stereoCalib\\inputSettingFileRight.xml";
const string calibResultSaveFile = "stereoCalib\\calibResult.yml";
Settings settingsLeft;
Settings settingsRight;
int leftOK = singleCameraCalib(inputSettingFileLeft, settingsLeft);
if(leftOK)
{
cout << "Left Camera Calibrate Failed! " << endl;
return -1;
}
int rightOK = singleCameraCalib(inputSettingFileRight, settingsRight);
if(rightOK)
{
cout << "Right Camera Calibrate Failed! " << endl;
return -1;
}
if(sameSettings(settingsLeft, settingsRight))
{
cout << "Left Calibrate Board is not same with Right Calibrate Board !" << endl;
return -1;
}
vector::iterator iterLeft;
vector::iterator iterRight;
Mat viewLeft, viewRight, viewGrayLeft, viewGrayRight;
Mat unDistortViewLeft, unDistortViewRight, rectifyViewLeft, rectifyViewRight;
Size imageSize;
Size rectifyImageSize;
int chessBoardFlags = CALIB_CB_ADAPTIVE_THRESH | CALIB_CB_NORMALIZE_IMAGE;
if(!settingsLeft.useFisheye)
{
// fast check erroneously fails with high distortions like fisheye
chessBoardFlags |= CALIB_CB_FAST_CHECK;
}
int goodFrameCount = 0;
vector imagePointBufferLeft, imagePointBufferRight;
vector< vector > imagesPointBufferLeft, imagesPointBufferRight;
// 获取匹配点
for(iterLeft = settingsLeft.imageList.begin(), iterRight = settingsRight.imageList.begin();
iterLeft != settingsLeft.imageList.end() && iterRight != settingsRight.imageList.end();
++iterLeft, ++iterRight)
{
viewLeft = imread(*iterLeft, CV_LOAD_IMAGE_UNCHANGED);
viewRight = imread(*iterRight, CV_LOAD_IMAGE_UNCHANGED);
if(!viewLeft.data || !viewRight.data)
{
cout << "read Image Pair:(" << *iterLeft << ", " << *iterRight <<") Failed !" << endl;
continue;
}
if(viewLeft.channels() == 3)
{
cvtColor(viewLeft, viewGrayLeft, CV_BGR2GRAY);
}
else
{
viewLeft.copyTo(viewGrayLeft);
}
if(viewRight.channels() == 3)
{
cvtColor(viewRight, viewGrayRight, CV_BGR2GRAY);
}
else
{
viewRight.copyTo(viewGrayRight);
}
bool foundLeft = false;
bool foundRight = false;
switch(settingsLeft.calibrationPattern)
{
case Settings::CHESSBOARD:
foundLeft = findChessboardCorners( viewGrayLeft, settingsLeft.boardSize, imagePointBufferLeft, chessBoardFlags);
foundRight = findChessboardCorners( viewGrayRight, settingsRight.boardSize, imagePointBufferRight, chessBoardFlags);
break;
case Settings::CIRCLES_GRID:
foundLeft = findCirclesGrid( viewGrayLeft, settingsLeft.boardSize, imagePointBufferLeft );
foundRight = findCirclesGrid(viewGrayRight, settingsRight.boardSize, imagePointBufferRight);
break;
case Settings::ASYMMETRIC_CIRCLES_GRID:
foundLeft = findCirclesGrid( viewGrayLeft, settingsLeft.boardSize, imagePointBufferLeft, CALIB_CB_ASYMMETRIC_GRID );
foundRight = findCirclesGrid(viewGrayRight, settingsRight.boardSize, imagePointBufferRight, CALIB_CB_ASYMMETRIC_GRID);
break;
default:
foundLeft = false;
foundRight = false;
break;
}
if(foundLeft && foundRight)
{
if( settingsLeft.calibrationPattern == Settings::CHESSBOARD)
{
cornerSubPix( viewGrayLeft, imagePointBufferLeft, Size(11,11),
Size(-1,-1), TermCriteria( TermCriteria::EPS+TermCriteria::COUNT, 30, 0.1 ));
cornerSubPix( viewGrayRight, imagePointBufferRight, Size(11,11),
Size(-1,-1), TermCriteria( TermCriteria::EPS+TermCriteria::COUNT, 30, 0.1 ));
}
imagesPointBufferLeft.push_back(imagePointBufferLeft);
imagesPointBufferRight.push_back(imagePointBufferRight);
//获取图像的大小
imageSize.height = viewGrayLeft.rows;
imageSize.width = viewGrayLeft.cols;
goodFrameCount++;
}
}//for iterLeft && iterRight
// 获取标定板的实际3维坐标
vector > imagesRealPoint(1);
calcBoardCornerPositions(settingsLeft.boardSize, settingsLeft.squareSize, imagesRealPoint[0], settingsLeft.calibrationPattern);
imagesRealPoint.resize(goodFrameCount,imagesRealPoint[0]);
Mat cameraMatrixLeft = settingsLeft.cameraMatrix;
Mat distCoeffsLeft = settingsLeft.distCoeffs;
Mat cameraMatrixRight = settingsRight.cameraMatrix;
Mat distCoeffsRight = settingsRight.distCoeffs;
double stereoError = 0.0;
Mat R, T; // 旋转矩阵和平移矩阵
Mat E, F; // 本征矩阵和基础矩阵
Mat R1, R2, P1, P2, Q; // 左右相机旋转矩阵、左右单相机投影矩阵、视差-深度变换矩阵
Rect validRIOLeft, validRIORight; // 普通相机校正后的左右视图的有效区域
rectifyImageSize = imageSize;
Mat mapLx, mapLy, mapRx, mapRy; // remap的网格
if(settingsLeft.useFisheye)
{
int iter, iter2;
vector > imagesRealPoint3d;
vector > imagesPointBufferLeft2d;
vector > imagesPointBufferRight2d;
for (iter = 0; iter < imagesRealPoint.size(); ++iter)
{
vector imageRealPoint3d;
vector imagePointBufferLeft2d;
vector imagePointBufferRight2d;
Point3f point3f;
Point2f pointLeft2f;
Point2f pointRight2f;
Point3d point3d;
Point2d pointLeft2d;
Point2d pointRight2d;
for (iter2 = 0; iter2
3.2 相机标定实现:
#ifndef SINGLENARROWANGLECAMERACALIB_H
#define SINGLENARROWANGLECAMERACALIB_H
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#ifndef _CRT_SECURE_NO_WARNINGS
# define _CRT_SECURE_NO_WARNINGS
#endif
using namespace cv;
using namespace std;
class Settings
{
public:
Settings() : goodInput(false) {}
enum Pattern { NOT_EXISTING, CHESSBOARD, CIRCLES_GRID, ASYMMETRIC_CIRCLES_GRID };
enum InputType { INVALID, CAMERA, VIDEO_FILE, IMAGE_LIST };
void write(FileStorage& fs) const; //Write serialization for this class
void read(const FileNode& node); //Read serialization for this class
void validate();
Mat nextImage();
static bool readStringList( const string& filename, vector& l );
public:
Size boardSize; // The size of the board -> Number of items by width and height
Pattern calibrationPattern; // One of the Chessboard, circles, or asymmetric circle pattern
float squareSize; // The size of a square in your defined unit (point, millimeter,etc).
int nrFrames; // The number of frames to use from the input for calibration
float aspectRatio; // The aspect ratio
int delay; // In case of a video input
bool writePoints; // Write detected feature points
bool writeExtrinsics; // Write extrinsic parameters
bool calibZeroTangentDist; // Assume zero tangential distortion
bool calibFixPrincipalPoint; // Fix the principal point at the center
bool flipVertical; // Flip the captured images around the horizontal axis
string outputFileName; // The name of the file where to write
bool showUndistorsed; // Show undistorted(去畸变的图像) images after calibration
string input; // The input ->
bool useFisheye; // use fisheye camera model for calibration
bool fixK1; // fix K1 distortion coefficient
bool fixK2; // fix K2 distortion coefficient
bool fixK3; // fix K3 distortion coefficient
bool fixK4; // fix K4 distortion coefficient
bool fixK5; // fix K5 distortion coefficient
int cameraID;
vector imageList;
size_t atImageList;
VideoCapture inputCapture;
InputType inputType;
bool goodInput;
int flag;
Mat cameraMatrix;
Mat distCoeffs;
vector reprojErrs;
vector > imagePoints;
double totalAvgErr;
private:
string patternToUse;
};
#endif // SINGLENARROWANGLECAMERACALIB_H
#include "singlecameracalib.h"
void Settings::write(FileStorage& fs) const //Write serialization for this class
{
fs << "{"
<< "BoardSize_Width" << boardSize.width
<< "BoardSize_Height" << boardSize.height
<< "Square_Size" << squareSize
<< "Calibrate_Pattern" << patternToUse
<< "Calibrate_NrOfFrameToUse" << nrFrames
<< "Calibrate_FixAspectRatio" << aspectRatio
<< "Calibrate_AssumeZeroTangentialDistortion" << calibZeroTangentDist
<< "Calibrate_FixPrincipalPointAtTheCenter" << calibFixPrincipalPoint
<< "Write_DetectedFeaturePoints" << writePoints
<< "Write_extrinsicParameters" << writeExtrinsics
<< "Write_outputFileName" << outputFileName
<< "Show_UndistortedImage" << showUndistorsed
<< "Input_FlipAroundHorizontalAxis" << flipVertical
<< "Input_Delay" << delay
<< "Input" << input
<< "}";
}
void Settings::read(const FileNode& node) //Read serialization for this class
{
node["BoardSize_Width" ] >> boardSize.width;
node["BoardSize_Height"] >> boardSize.height;
node["Calibrate_Pattern"] >> patternToUse;
node["Square_Size"] >> squareSize;
node["Calibrate_NrOfFrameToUse"] >> nrFrames;
node["Calibrate_FixAspectRatio"] >> aspectRatio;
node["Write_DetectedFeaturePoints"] >> writePoints;
node["Write_extrinsicParameters"] >> writeExtrinsics;
node["Write_outputFileName"] >> outputFileName;
node["Calibrate_AssumeZeroTangentialDistortion"] >> calibZeroTangentDist;
node["Calibrate_FixPrincipalPointAtTheCenter"] >> calibFixPrincipalPoint;
node["Calibrate_UseFisheyeModel"] >> useFisheye;
node["Input_FlipAroundHorizontalAxis"] >> flipVertical;
node["Show_UndistortedImage"] >> showUndistorsed;
node["Input"] >> input;
node["Input_Delay"] >> delay;
node["Fix_K1"] >> fixK1;
node["Fix_K2"] >> fixK2;
node["Fix_K3"] >> fixK3;
node["Fix_K4"] >> fixK4;
node["Fix_K5"] >> fixK5;
validate();
}
void Settings::validate()
{
goodInput = true;
if (boardSize.width <= 0 || boardSize.height <= 0)
{
cerr << "Invalid Board size: " << boardSize.width << " " << boardSize.height << endl;
goodInput = false;
}
if (squareSize <= 10e-6)
{
cerr << "Invalid square size " << squareSize << endl;
goodInput = false;
}
if (nrFrames <= 0)
{
cerr << "Invalid number of frames " << nrFrames << endl;
goodInput = false;
}
if (input.empty()) // Check for valid input
inputType = INVALID;
else
{
if (input[0] >= '0' && input[0] <= '9')
{
stringstream ss(input);
ss >> cameraID;
inputType = CAMERA;
}
else
{
if (readStringList(input, imageList))
{
inputType = IMAGE_LIST;
nrFrames = (nrFrames < (int)imageList.size()) ? nrFrames : (int)imageList.size();
}
else
inputType = VIDEO_FILE;
}
if (inputType == CAMERA)
inputCapture.open(cameraID);
if (inputType == VIDEO_FILE)
inputCapture.open(input);
if (inputType != IMAGE_LIST && !inputCapture.isOpened())
inputType = INVALID;
}
if (inputType == INVALID)
{
cerr << " Input does not exist: " << input;
goodInput = false;
}
flag = 0;
if(calibFixPrincipalPoint) flag |= CALIB_FIX_PRINCIPAL_POINT;
if(calibZeroTangentDist) flag |= CALIB_ZERO_TANGENT_DIST;
if(aspectRatio) flag |= CALIB_FIX_ASPECT_RATIO;
if(fixK1) flag |= CALIB_FIX_K1;
if(fixK2) flag |= CALIB_FIX_K2;
if(fixK3) flag |= CALIB_FIX_K3;
if(fixK4) flag |= CALIB_FIX_K4;
if(fixK5) flag |= CALIB_FIX_K5;
if (useFisheye) {
// the fisheye model has its own enum, so overwrite the flags
flag = fisheye::CALIB_FIX_SKEW | fisheye::CALIB_RECOMPUTE_EXTRINSIC;
if(fixK1) flag |= fisheye::CALIB_FIX_K1;
if(fixK2) flag |= fisheye::CALIB_FIX_K2;
if(fixK3) flag |= fisheye::CALIB_FIX_K3;
if(fixK4) flag |= fisheye::CALIB_FIX_K4;
}
calibrationPattern = NOT_EXISTING;
if (!patternToUse.compare("CHESSBOARD")) calibrationPattern = CHESSBOARD;
if (!patternToUse.compare("CIRCLES_GRID")) calibrationPattern = CIRCLES_GRID;
if (!patternToUse.compare("ASYMMETRIC_CIRCLES_GRID")) calibrationPattern = ASYMMETRIC_CIRCLES_GRID;
if (calibrationPattern == NOT_EXISTING)
{
cerr << " Camera calibration mode does not exist: " << patternToUse << endl;
goodInput = false;
}
atImageList = 0;
}
Mat Settings::nextImage()
{
Mat result;
if( inputCapture.isOpened() )
{
Mat view0;
inputCapture >> view0;
view0.copyTo(result);
}
else if( atImageList < imageList.size() )
result = imread(imageList[atImageList++], IMREAD_COLOR);
return result;
}
bool Settings::readStringList( const string& filename, vector& l )
{
l.clear();
FileStorage fs(filename, FileStorage::READ);
if( !fs.isOpened() )
return false;
FileNode n = fs.getFirstTopLevelNode();
if( n.type() != FileNode::SEQ )
return false;
FileNodeIterator it = n.begin(), it_end = n.end();
for( ; it != it_end; ++it )
l.push_back((string)*it);
return true;
}
3.3 相机标定配置文件说明:
3.3.1 相机标定
singleCalibImages内容:
imagesFileName.xml内容:
singleCalib\\singleCalibImages\\20170808175704.jpg
singleCalib\\singleCalibImages\\20170808175708.jpg
singleCalib\\singleCalibImages\\20170808175714.jpg
singleCalib\\singleCalibImages\\20170808175718.jpg
singleCalib\\singleCalibImages\\20170808175724.jpg
singleCalib\\singleCalibImages\\20170808175729.jpg
singleCalib\\singleCalibImages\\20170808175736.jpg
singleCalib\\singleCalibImages\\20170808175742.jpg
singleCalib\\singleCalibImages\\20170808175754.jpg
singleCalib\\singleCalibImages\\20170808175801.jpg
singleCalib\\singleCalibImages\\20170808175807.jpg
singleCalib\\singleCalibImages\\20170808175809.jpg
singleCalib\\singleCalibImages\\20170808175812.jpg
singleCalib\\singleCalibImages\\20170808175815.jpg
singleCalib\\singleCalibImages\\20170808175826.jpg
singleCalib\\singleCalibImages\\20170808175833.jpg
singleCalib\\singleCalibImages\\20170808175839.jpg
singleCalib\\singleCalibImages\\20170808175845.jpg
singleCalib\\singleCalibImages\\20170808175850.jpg
singleCalib\\singleCalibImages\\20170808175857.jpg
inputSettingFile.xml文件内容
8
6
67
"CHESSBOARD"
"singleCalib\\imagesFileName.xml"
0
100
13
1
0
0
"singleCalib\\outputCameraParams.xml"
1
1
1
1
0
0
0
0
1
3.3.2 立体相机标定
其中outputCameraParamsLeft.xml和outputCameraParamsRight.xml由程序生成
3.4. 运行部分截图