- 蓝桥杯备赛笔记(十) 背包问题
小魏´•ﻌ•`
蓝桥杯C++蓝桥杯笔记职场和发展
(1)背包模型有一个体积为V的背包,商店有n个物品,每个物品有一个价值v和体积w,每个物品只能被拿一次,问能够装下物品的最大价值。这里每一种物品只有两种状态,即“拿”或“不拿”。设状态dp[i][j]表示到第i个物品为止,拿的物品总体积为j的情况下的最大价值。转移方程为:dp[i][j]=max(dp[i-1][j],dp[i-1][j-w]+v)如果不拿物品i,那么最大价值就是dp[i-1][j
- 代码随想录训练营第三十八天| 322. 零钱兑换 279.完全平方数 139.单词拆分 背包问题总结篇
chengooooooo
算法
322.零钱兑换题目链接:322.零钱兑换-力扣(LeetCode)讲解链接:代码随想录和昨天做过的零钱对换不太一样昨天的零钱兑换是完全背包里的球排列问题这个是求在指定的背包容量内求最小的组合数动态规划五部曲1定义dp方程我们假设用了dp[j]个硬币去凑j容量的背包要求dp[j]最小2推导递推公式首先最少用j-coins[i]个硬币来凑dp[j-coins[i]]容量的金额(背包)(不加上他本身的
- 算法设计与分析第一章课后作业
小毛头~
算法
第一章一.单选题1【单选题】子程序(包括函数和方法)是用来被调用的,递归指的是A、不同子程序之间直接或间接调用的程序设计方法B、同一个子程序直接或间接调用自己的程序设计方法C、子程序向调用它的程序段返回结果的程序设计方法D、子程序不向调用它的程序段返回结果的程序设计方法正确答案:B我的答案:B得分:4.0分2【单选题】背包问题:n个物品和1个背包。对物品i,其价值为vi,重量为wi,背包的容量为W
- 算法第十六期——动态规划(DP)之线性DP
小叶pyか
算法动态规划
【概述】线性动态规划,是较常见的一类动态规划问题,其是在线性结构上进行状态转移,这类问题不像背包问题、区间DP等有固定的模板。线性动态规划的目标函数为特定变量的线性函数,约束是这些变量的线性不等式或等式,目的是求目标函数的最大值或最小值。因此,除了少量问题(如:LIS、LCS、LCIS等)有固定的模板外,大部分都要根据实际问题来推导得出答案。【例题】最长公共子序列(LCS)lanqiao0J题号1
- 第十三届蓝桥杯b组国赛dp问题
鱼香rose__
#蓝桥杯#动态规划蓝桥杯算法c++
第十三届蓝桥杯b组国赛dp问题\Huge{第十三届蓝桥杯b组国赛dp问题}第十三届蓝桥杯b组国赛dp问题刷题的时候发现往年国赛题中有三道dp问题,而且还都是背包问题,正好最近没写过dp,那就简单整理一下,尽量把我思路整理清楚hhh。关于背包问题,可以查看这篇博客:背包九讲——九种背包问题的算法思路+代码分析-CSDN博客题目链接:备赛蓝桥杯-蓝桥云课(lanqiao.cn)文章目录2022题意思路
- ACM刷题——背包问题
Nancy_627
ACM刷题acm竞赛算法
ACM刷题练习——背包问题01背包问题(Java解法)有N件物品和一个容量是V的背包。每件物品只能使用一次。第i件物品的体积是vi,价值是wi。求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。输出最大价值。输入格式第一行两个整数,N,V,用空格隔开,分别表示物品数量和背包容积。接下来有N行,每行两个整数vi,wi,用空格隔开,分别表示第i件物品的体积和价值。输出格式输出一
- 蓝桥杯刷题第二天——背包问题
XAX520_1314
蓝桥杯蓝桥杯职场和发展python
题目描述有N件物品和一个容量是V的背包。每件物品只能使用一次。第i件物品的体积是Vi价值是Wi。求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。输出最大价值。输入格式第一行两个整数,N,V,用空格隔开,分别表示物品数量和背包容积。接下来有N行,每行两个整数,W,用空格隔开,分别表示第件物品的体积和价值。输出格式输出一个整数,表示最大价值。数据范围0=v:dp[i][j]=
- Python算法L5:贪心算法
小熊同学哦
Python算法算法python贪心算法
Python贪心算法简介目录Python贪心算法简介贪心算法的基本步骤贪心算法的适用场景经典贪心算法问题1.**零钱兑换问题**2.**区间调度问题**3.**背包问题**贪心算法的优缺点优点:缺点:结语贪心算法(GreedyAlgorithm)是一种在每一步选择中都采取当前最优或最优解的算法。它的核心思想是,在保证每一步局部最优的情况下,希望通过贪心选择达到全局最优解。虽然贪心算法并不总能得到全
- 2024年CSP-J初赛备考建议
再临TSC
c++杂谈c++学习
针对2024年CSP-J(ComputerSciencePrinciplesJunior,即计算机科学原理初级认证)的备考,首先,先来看考试可能考的东西:动规(包括背包问题),主要在程序阅读还有程序补全题考,这方面,了解动规的原理就可以轻松拿分高精,也是在阅读和补全题,了解原理即可,Z2~Z3应该就学高精了深搜广搜,基础题可能会给你一个片段,然后问你这是什么算法,或者,问你下列选项中哪个正确,给你
- 数据结构与算法 - 贪心算法
临界点oc
数据结构与算法贪心算法算法
一、贪心例子贪心算法或贪婪算法的核心思想是:1.将寻找最优解的问题分为若干个步骤2.每一步骤都采用贪心原则,选取当前最优解3.因为没有考虑所有可能,局部最优的堆叠不一定让最终解最优贪心算法是一种在每一步选择中都采取在当前状态下最好或最优(即最有利)的选择,从而希望导致结果是最好或最优的算法。这种算法通常用于求解优化问题,如最小生成树、背包问题等。贪心算法的应用:1.背包问题:给定一组物品和一个背包
- 数学建模笔记——动态规划
liangbm3
数学建模笔记数学建模笔记动态规划python背包问题算法优化问题
数学建模笔记——动态规划动态规划1.模型原理2.典型例题2.1例1凑硬币2.2例2背包问题3.python代码实现3.1例13.2例2动态规划1.模型原理动态规划是运筹学的一个分支,通常用来解决多阶段决策过程最优化问题。动态规划的基本想法就是将原问题转换为一系列相互联系的子问题,然后通过逐层地推来求得最后的解。目前,动态规划常常出现在各类计算机算法竞赛或者程序员笔试面试中,在数学建模中出现的相对较
- 力扣494-目标和(Java详细题解)
Calebcode.
重生之我在lc刷算法leetcodejava算法
题目链接:494.目标和-力扣(LeetCode)前情提要:因为本人最近都来刷dp类的题目所以该题就默认用dp方法来做。最近刚学完01背包,所以现在的题解都是以01背包问题为基础再来写的。如果大家不懂01背包的话,建议可以去学一学,01背包问题可以说是背包问题的基础。如果大家感兴趣,我后期可以出一篇专门讲解01背包问题。dp五部曲。1.确定dp数组和i下标的含义。2.确定递推公式。3.dp初始化。
- HDU - 1398 完全背包问题求方案数
tran_sient
算法以及模板完全背包求方案数
题目描述:ProblemDescriptionPeopleinSilverlandusesquarecoins.Notonlytheyhavesquareshapesbutalsotheirvaluesaresquarenumbers.Coinswithvaluesofallsquarenumbersupto289(=17^2),i.e.,1-creditcoins,4-creditcoins,9
- AcWing 532. 货币系统 多重背包问题的变形
罚时大师月色
算法提高课
AcWing532.货币系统在网友的国度中共有 n 种不同面额的货币,第 i 种货币的面额为 a[i],你可以假设每一种货币都有无穷多张。为了方便,我们把货币种数为 n、面额数组为 a[1…n] 的货币系统记作 (n,a)。在一个完善的货币系统中,每一个非负整数的金额 x 都应该可以被表示出,即对每一个非负整数 x,都存在 n 个非负整数 t[i] 满足 a[i]×t[i] 的和为 x。然而,在网
- 动态规划算法之背包问题详细解读(附带Java代码解读)
南城花随雪。
算法分析算法动态规划
动态规划中的背包问题(KnapsackProblem)是经典问题之一,通常用来解决选择一组物品放入背包使得背包的价值最大化的问题。根据问题条件的不同,背包问题有很多种变体,如0-1背包问题、完全背包问题、多重背包问题等。这里,我们详细介绍最经典的0-1背包问题,并提供代码的详细解读。1.0-1背包问题简介在0-1背包问题中,有一个容量为C的背包和n件物品。每件物品有两个属性:重量w[i]和价值v[
- c++使用动态规划求解01背包问题
苓一在学习
算法c++
-什么是01背包问题?在01背包问题中,因为每种物品只有一个,对于每个物品只需要考虑选与不选两种情况。如果不选择将其放入背包中,则不需要处理。如果选择将其放入背包中,由于不清楚之前放入的物品占据了多大的空间,需要枚举将这个物品放入背包后可能占据背包空间的所有情况。需要注意的是:01背包问题不能使用贪心思想,因为每次选取最大的并不能保证背包刚好装满,遇到01背包问题先找到题目中的“背包”和“物品”,
- 01背包问题C++
znyee07
c++c++蓝桥杯c语言动态规划
1.问题简述:有N件物品和一个容量是V的背包,每件物品只能使用一次。第i件物品的体积是vi,价值是wi。求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大2.朴素解法及优化:定义状态f[i][j]表示:前i件物品当体积不超过j时的所有选法的集合状态方程f[i][j]的状态转移关键在于第i件物品选或不选;不选第i件时f[i][j]=f[i-1][j];选第i件时f[i][j]=
- 个人关于背包问题的总结(一)
Saber—Lily
背包问题总结笔记
一.前言背包问题是动态规划的一个巨大的分支,常见的背包问题都有相对的模版,个人认为如果只是会背板子是下下之策,从长远的角度来看是不可取的,因此我想在这里分享一些个人对于背包问题的理解(会有借鉴其他大牛地方,逃~)同时如果我有一些不正的确的地方也欢迎大家和我交流。希望能加深大家对背包问题的理解,二.01背包问题理解以及常见的例题1.01背包的分析以及理解动态规划(dp)问题的一般求解步骤概括如下1.
- 动态规划:一和零题目分析
小希与阿树
动态规划算法
法一:三维dp数组(容易理解,但空间复杂度较高)本题的含义是从strs数组中选取子集,使其子集的个数最大,限制条件是所有子集中0和1的个数总和有要求,因此可以转化为01背包问题,从字符串数组中任取子集(每个元素只能取一次),限制条件是所取子集数组的0和1的个数总和。确定dp数组及其下标含义:dp[i][j][k]表示从下标0~i的字符串数组中任取字符串放入背包含有j个0和k个1的字符串个数,其中d
- C++---背包模型---潜水员(每日一道算法2023.3.13)
SRestia
算法算法c++动态规划
注意事项:本题是"动态规划—01背包"和"背包模型—二维费用的背包问题"的扩展题,优化思路不多赘述,dp思路会稍有不同,下面详细讲解。题目:潜水员为了潜水要使用特殊的装备。他有一个带2种气体的气缸:一个为氧气,一个为氮气。让潜水员下潜的深度需要各种数量的氧和氮。潜水员有一定数量的气缸。每个气缸都有重量和气体容量。潜水员为了完成他的工作需要特定数量的氧和氮。他完成工作所需气缸的总重的最低限度的是多少
- 常见的算法底层思想
qinbaby
算法
1.分治法思想:将一个大问题分解成若干个规模较小的相同问题,递归求解子问题,最后合并子问题的解得到原问题的解。例子:快速排序、归并排序、二分查找。2.动态规划思想:将原问题分解为若干个相互重叠的子问题,通过解决子问题来构建原问题的解,并存储子问题的解以避免重复计算。例子:斐波那契数列、最长公共子序列、背包问题。3.贪心算法思想:在每一步选择中都采取在当前状态下最好或最优的选择,从而希望导致结果是全
- 416.分割等和子集
纯白色的少云
动态规划
416.分割等和子集给你一个只包含正整数的非空数组nums。请你判断是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。示例1:输入:nums=[1,5,11,5]输出:true解释:数组可以分割成[1,5,5]和[11]。示例2:输入:nums=[1,2,3,5]输出:false解释:数组不能分割成两个元素和相等的子集。思路回溯是一种解法,但是会超时。另一种将其转换成背包问题,nums数
- 使用Python计算平面多边形间最短距离,数据需要从exce
Buoluochuixue
java
使用Python计算平面多边形间最短距离,数据需要从exce使用Python计算平面多边形间最短距离,数据需要从excel表格中导入,*多边形种类包括(圆形、矩形、六边形、五边形、跑道形/胶囊形),*Python代码题解|#[SCOI2009]粉刷匠#//分组背包问题,首先考虑一个木板的情况://对于一个木板而言:dp[i][j],i表示当前是第i次粉刷,粉刷第j块格子的情况。//那么得到状态转移
- 0-1背包问题
能力越小责任越小YA
算法算法动态规划c++
问题描述:N种物品,每种物品只有1个,每个物品有自己的重量和价值,有一个最多只能放重量为M的背包。问:这个背包最多能装价值为多少的物品?二维dp数组解法:dp数组的含义:dp[i][j]表示下标为0-i(物品的编号)之间的物品任取,放进容量为j的背包里的最大价值;递推公式:dp[i][j]=max(dp[i-1][j],dp[i-1][j-weight[i]]+value[i]);初始化:dp[i
- 完全背包&多重背包问题(动态规划)
能力越小责任越小YA
算法算法动态规划c++
完全背包问题:每个物品使用次数没有限制,与0-1背包的不同之处在于遍历背包的顺序是正序。#includeusingnamespacestd;intmain(){intn,v;cin>>n>>v;vectorweight(n),values(n),dp(v+1,0);//dp[j]:容量为j的背包的最大价值for(inti=0;i>weight[i]>>values[i];}for(inti=0;i
- acwing完全背包问题
CodeWizard~
算法深度优先图论c++数据结构
acwing完全背包问题题目:有N种物品和一个容量是V的背包,每种物品都有无限件可用。第i种物品的体积是vi,价值是wi。求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。输出最大价值。输入格式第一行两个整数,N,V,用空格隔开,分别表示物品种数和背包容积。接下来有N行,每行两个整数vi,wi,用空格隔开,分别表示第i种物品的体积和价值。输出格式输出一个整数,表示最大价值。
- [题解-华为机试] 购物单
初梦语雪
算法题#动态规划华为算法
购物单解题思路较为抽象的01背包问题,#include#includeusingnamespacestd;intmain(){intN,m;cin>>N>>m;intvalue,priority,q;inti,j;vector>data(m+1,vector(6,0));for(i=1;i>value>>priority>>q;//是主件if(q==0){data[i][0]=value;data
- 【动态规划】【打卡121天】:背包理论基础
晓风残月一望关河萧索
【算法】
1、背包理论基础有N件物品和一个最多能背重量为W的背包。第i件物品的重量是weight[i],得到的价值是value[i]。每件物品只能用一次,求解将哪些物品装入背包里物品价值最大。其实这是标准的背包问题。每一件物品有2种状态,取物品放入背包中,不取该物品放入背包中。所以可以使用回溯法搜索出所有的情况,那么时间复杂度就是O(2^n),这里的n表示物品数量。2、算法分析①确定dp数组以及下标的含义对
- Leetcode Day11背包问题
比起村村长
leetcodeleetcode算法职场和发展
背包问题模版@cachedefdfs(i,c):#i指我们考虑几个物品,c指当前容量#没有物品可以考虑了,直接返回0ific:returndfs(i-1,c)else:returnmax(dfs(i-1,c),dfs(i-1,c-weight[i])+value[i]494给你一个非负整数数组nums和一个整数target。向数组中的每个整数前添加‘+’或‘-’,然后串联起所有整数,可以构造一个表
- 算法分析与设计——实验5:分支限界法
阮阮的阮阮
算法分析与设计实验报告算法分支限界单源最短路径问题0-1背包问题N皇后问题c++java
实验五分支限界法一、实验目的1、理解分支限界算法的基本原理;2、理解分支限界算法与回溯算法的区别;3、能够使用分支限界算法边界求解典型问题。二、实验内容及要求实验要求:通过上机实验进行算法实现,保存和打印出程序的运行结果,并结合程序进行分析,上交实验报告和程序文件。实验内容:1、使用分支限界算法解决单源最短路径问题。2、使用分支限界算法解决0-1背包问题。3、在N*N的棋盘上放置彼此不受攻击的N个
- VMware Workstation 11 或者 VMware Player 7安装MAC OS X 10.10 Yosemite
iwindyforest
vmwaremac os10.10workstationplayer
最近尝试了下VMware下安装MacOS 系统,
安装过程中发现网上可供参考的文章都是VMware Workstation 10以下, MacOS X 10.9以下的文章,
只能提供大概的思路, 但是实际安装起来由于版本问题, 走了不少弯路, 所以我尝试写以下总结, 希望能给有兴趣安装OSX的人提供一点帮助。
写在前面的话:
其实安装好后发现, 由于我的th
- 关于《基于模型驱动的B/S在线开发平台》源代码开源的疑虑?
deathwknight
JavaScriptjava框架
本人从学习Java开发到现在已有10年整,从一个要自学 java买成javascript的小菜鸟,成长为只会java和javascript语言的老菜鸟(个人邮箱:
[email protected])
一路走来,跌跌撞撞。用自己的三年多业余时间,瞎搞一个小东西(基于模型驱动的B/S在线开发平台,非MVC框架、非代码生成)。希望与大家一起分享,同时有许些疑虑,希望有人可以交流下
平台
- 如何把maven项目转成web项目
Kai_Ge
mavenMyEclipse
创建Web工程,使用eclipse ee创建maven web工程 1.右键项目,选择Project Facets,点击Convert to faceted from 2.更改Dynamic Web Module的Version为2.5.(3.0为Java7的,Tomcat6不支持). 如果提示错误,可能需要在Java Compiler设置Compiler compl
- 主管???
Array_06
工作
转载:http://www.blogjava.net/fastzch/archive/2010/11/25/339054.html
很久以前跟同事参加的培训,同事整理得很详细,必须得转!
前段时间,公司有组织中高阶主管及其培养干部进行了为期三天的管理训练培训。三天的课程下来,虽然内容较多,因对老师三天来的课程内容深有感触,故借着整理学习心得的机会,将三天来的培训课程做了一个
- python内置函数大全
2002wmj
python
最近一直在看python的document,打算在基础方面重点看一下python的keyword、Build-in Function、Build-in Constants、Build-in Types、Build-in Exception这四个方面,其实在看的时候发现整个《The Python Standard Library》章节都是很不错的,其中描述了很多不错的主题。先把Build-in Fu
- JSP页面通过JQUERY合并行
357029540
JavaScriptjquery
在写程序的过程中我们难免会遇到在页面上合并单元行的情况,如图所示
如果对于会的同学可能很简单,但是对没有思路的同学来说还是比较麻烦的,提供一下用JQUERY实现的参考代码
function mergeCell(){
var trs = $("#table tr");
&nb
- Java基础
冰天百华
java基础
学习函数式编程
package base;
import java.text.DecimalFormat;
public class Main {
public static void main(String[] args) {
// Integer a = 4;
// Double aa = (double)a / 100000;
// Decimal
- unix时间戳相互转换
adminjun
转换unix时间戳
如何在不同编程语言中获取现在的Unix时间戳(Unix timestamp)? Java time JavaScript Math.round(new Date().getTime()/1000)
getTime()返回数值的单位是毫秒 Microsoft .NET / C# epoch = (DateTime.Now.ToUniversalTime().Ticks - 62135
- 作为一个合格程序员该做的事
aijuans
程序员
作为一个合格程序员每天该做的事 1、总结自己一天任务的完成情况 最好的方式是写工作日志,把自己今天完成了什么事情,遇见了什么问题都记录下来,日后翻看好处多多
2、考虑自己明天应该做的主要工作 把明天要做的事情列出来,并按照优先级排列,第二天应该把自己效率最高的时间分配给最重要的工作
3、考虑自己一天工作中失误的地方,并想出避免下一次再犯的方法 出错不要紧,最重
- 由html5视频播放引发的总结
ayaoxinchao
html5视频video
前言
项目中存在视频播放的功能,前期设计是以flash播放器播放视频的。但是现在由于需要兼容苹果的设备,必须采用html5的方式来播放视频。我就出于兴趣对html5播放视频做了简单的了解,不了解不知道,水真是很深。本文所记录的知识一些浅尝辄止的知识,说起来很惭愧。
视频结构
本该直接介绍html5的<video>的,但鉴于本人对视频
- 解决httpclient访问自签名https报javax.net.ssl.SSLHandshakeException: sun.security.validat
bewithme
httpclient
如果你构建了一个https协议的站点,而此站点的安全证书并不是合法的第三方证书颁发机构所签发,那么你用httpclient去访问此站点会报如下错误
javax.net.ssl.SSLHandshakeException: sun.security.validator.ValidatorException: PKIX path bu
- Jedis连接池的入门级使用
bijian1013
redisredis数据库jedis
Jedis连接池操作步骤如下:
a.获取Jedis实例需要从JedisPool中获取;
b.用完Jedis实例需要返还给JedisPool;
c.如果Jedis在使用过程中出错,则也需要还给JedisPool;
packag
- 变与不变
bingyingao
不变变亲情永恒
变与不变
周末骑车转到了五年前租住的小区,曾经最爱吃的西北面馆、江西水饺、手工拉面早已不在,
各种店铺都换了好几茬,这些是变的。
三年前还很流行的一款手机在今天看起来已经落后的不像样子。
三年前还运行的好好的一家公司,今天也已经不复存在。
一座座高楼拔地而起,
- 【Scala十】Scala核心四:集合框架之List
bit1129
scala
Spark的RDD作为一个分布式不可变的数据集合,它提供的转换操作,很多是借鉴于Scala的集合框架提供的一些函数,因此,有必要对Scala的集合进行详细的了解
1. 泛型集合都是协变的,对于List而言,如果B是A的子类,那么List[B]也是List[A]的子类,即可以把List[B]的实例赋值给List[A]变量
2. 给变量赋值(注意val关键字,a,b
- Nested Functions in C
bookjovi
cclosure
Nested Functions 又称closure,属于functional language中的概念,一直以为C中是不支持closure的,现在看来我错了,不过C标准中是不支持的,而GCC支持。
既然GCC支持了closure,那么 lexical scoping自然也支持了,同时在C中label也是可以在nested functions中自由跳转的
- Java-Collections Framework学习与总结-WeakHashMap
BrokenDreams
Collections
总结这个类之前,首先看一下Java引用的相关知识。Java的引用分为四种:强引用、软引用、弱引用和虚引用。
强引用:就是常见的代码中的引用,如Object o = new Object();存在强引用的对象不会被垃圾收集
- 读《研磨设计模式》-代码笔记-解释器模式-Interpret
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 解释器(Interpreter)模式的意图是可以按照自己定义的组合规则集合来组合可执行对象
*
* 代码示例实现XML里面1.读取单个元素的值 2.读取单个属性的值
* 多
- After Effects操作&快捷键
cherishLC
After Effects
1、快捷键官方文档
中文版:https://helpx.adobe.com/cn/after-effects/using/keyboard-shortcuts-reference.html
英文版:https://helpx.adobe.com/after-effects/using/keyboard-shortcuts-reference.html
2、常用快捷键
- Maven 常用命令
crabdave
maven
Maven 常用命令
mvn archetype:generate
mvn install
mvn clean
mvn clean complie
mvn clean test
mvn clean install
mvn clean package
mvn test
mvn package
mvn site
mvn dependency:res
- shell bad substitution
daizj
shell脚本
#!/bin/sh
/data/script/common/run_cmd.exp 192.168.13.168 "impala-shell -islave4 -q 'insert OVERWRITE table imeis.${tableName} select ${selectFields}, ds, fnv_hash(concat(cast(ds as string), im
- Java SE 第二讲(原生数据类型 Primitive Data Type)
dcj3sjt126com
java
Java SE 第二讲:
1. Windows: notepad, editplus, ultraedit, gvim
Linux: vi, vim, gedit
2. Java 中的数据类型分为两大类:
1)原生数据类型 (Primitive Data Type)
2)引用类型(对象类型) (R
- CGridView中实现批量删除
dcj3sjt126com
PHPyii
1,CGridView中的columns添加
array(
'selectableRows' => 2,
'footer' => '<button type="button" onclick="GetCheckbox();" style=&
- Java中泛型的各种使用
dyy_gusi
java泛型
Java中的泛型的使用:1.普通的泛型使用
在使用类的时候后面的<>中的类型就是我们确定的类型。
public class MyClass1<T> {//此处定义的泛型是T
private T var;
public T getVar() {
return var;
}
public void setVa
- Web开发技术十年发展历程
gcq511120594
Web浏览器数据挖掘
回顾web开发技术这十年发展历程:
Ajax
03年的时候我上六年级,那时候网吧刚在小县城的角落萌生。传奇,大话西游第一代网游一时风靡。我抱着试一试的心态给了网吧老板两块钱想申请个号玩玩,然后接下来的一个小时我一直在,注,册,账,号。
彼时网吧用的512k的带宽,注册的时候,填了一堆信息,提交,页面跳转,嘣,”您填写的信息有误,请重填”。然后跳转回注册页面,以此循环。我现在时常想,如果当时a
- openSession()与getCurrentSession()区别:
hetongfei
javaDAOHibernate
来自 http://blog.csdn.net/dy511/article/details/6166134
1.getCurrentSession创建的session会和绑定到当前线程,而openSession不会。
2. getCurrentSession创建的线程会在事务回滚或事物提交后自动关闭,而openSession必须手动关闭。
这里getCurrentSession本地事务(本地
- 第一章 安装Nginx+Lua开发环境
jinnianshilongnian
nginxluaopenresty
首先我们选择使用OpenResty,其是由Nginx核心加很多第三方模块组成,其最大的亮点是默认集成了Lua开发环境,使得Nginx可以作为一个Web Server使用。借助于Nginx的事件驱动模型和非阻塞IO,可以实现高性能的Web应用程序。而且OpenResty提供了大量组件如Mysql、Redis、Memcached等等,使在Nginx上开发Web应用更方便更简单。目前在京东如实时价格、秒
- HSQLDB In-Process方式访问内存数据库
liyonghui160com
HSQLDB一大特色就是能够在内存中建立数据库,当然它也能将这些内存数据库保存到文件中以便实现真正的持久化。
先睹为快!
下面是一个In-Process方式访问内存数据库的代码示例:
下面代码需要引入hsqldb.jar包 (hsqldb-2.2.8)
import java.s
- Java线程的5个使用技巧
pda158
java数据结构
Java线程有哪些不太为人所知的技巧与用法? 萝卜白菜各有所爱。像我就喜欢Java。学无止境,这也是我喜欢它的一个原因。日常
工作中你所用到的工具,通常都有些你从来没有了解过的东西,比方说某个方法或者是一些有趣的用法。比如说线程。没错,就是线程。或者确切说是Thread这个类。当我们在构建高可扩展性系统的时候,通常会面临各种各样的并发编程的问题,不过我们现在所要讲的可能会略有不同。
- 开发资源大整合:编程语言篇——JavaScript(1)
shoothao
JavaScript
概述:本系列的资源整合来自于github中各个领域的大牛,来收藏你感兴趣的东西吧。
程序包管理器
管理javascript库并提供对这些库的快速使用与打包的服务。
Bower - 用于web的程序包管理。
component - 用于客户端的程序包管理,构建更好的web应用程序。
spm - 全新的静态的文件包管
- 避免使用终结函数
vahoa.ma
javajvmC++
终结函数(finalizer)通常是不可预测的,常常也是很危险的,一般情况下不是必要的。使用终结函数会导致不稳定的行为、更差的性能,以及带来移植性问题。不要把终结函数当做C++中的析构函数(destructors)的对应物。
我自己总结了一下这一条的综合性结论是这样的:
1)在涉及使用资源,使用完毕后要释放资源的情形下,首先要用一个显示的方