球坐标下的Laplace

球坐标下的Laplace
∇ = r ^ ∂ r + θ ^ 1 r ∂ θ + ϕ ^ 1 r sin ⁡ θ ∂ ϕ Δ φ = ∇ ⋅ ∇ φ = ∇ ⋅ ( r ^ ∂ r φ + θ ^ r ∂ θ φ + ϕ ^ r sin ⁡ θ ∂ ϕ φ ) = ∇ ( r 2 sin ⁡ θ ∂ r φ ) ⋅ r ^ r 2 sin ⁡ θ + ∇ ( sin ⁡ θ ∂ θ φ ) ⋅ θ ^ r sin ⁡ θ + ∇ ( 1 sin ⁡ θ ∂ ϕ φ ) ⋅ ϕ ^ r = 1 r 2 ∂ r ( r 2 ∂ r φ ) + 1 r 2 sin ⁡ θ ∂ θ ( sin ⁡ θ ∂ θ φ ) + 1 r 2 sin ⁡ 2 θ ∂ ϕ ∂ ϕ φ \nabla=\hat{r}\partial_r+\hat{\theta}\frac{1}{r}\partial_\theta+\hat{\phi}\frac{1}{r\sin\theta}\partial_\phi\\ \Delta\varphi=\nabla\cdot\nabla\varphi\\ =\nabla\cdot(\hat{r}\partial_r\varphi+\frac{\hat{\theta}}{r}\partial_\theta\varphi+\frac{\hat{\phi}}{r\sin\theta}\partial_\phi\varphi)\\ =\nabla(r^2\sin\theta\partial_r\varphi)\cdot\frac{\hat{r}}{r^2\sin\theta}+\nabla(\sin\theta\partial_\theta\varphi)\cdot\frac{\hat{\theta}}{r\sin\theta}+\nabla(\frac{1}{\sin\theta}\partial_\phi\varphi)\cdot\frac{\hat{\phi}}{r}\\ =\frac{1}{r^2}\partial_r(r^2\partial_r\varphi)+\frac{1}{r^2\sin\theta}\partial_\theta(\sin\theta\partial_\theta\varphi)+\frac{1}{r^2\sin^2\theta}\partial_\phi\partial_\phi\varphi =r^r+θ^r1θ+ϕ^rsinθ1ϕΔφ=φ=(r^rφ+rθ^θφ+rsinθϕ^ϕφ)=(r2sinθrφ)r2sinθr^+(sinθθφ)rsinθθ^+(sinθ1ϕφ)rϕ^=r21r(r2rφ)+r2sinθ1θ(sinθθφ)+r2sin2θ1ϕϕφ

你可能感兴趣的:(球坐标下的Laplace)