OpenCV+OpenCL stereo match 代码

之前配置cuda跟opencv 的混合编程,发现只要使用的东西多半还要用opencv的代码编译一次,加上cuda的编译太浪费时间了,我看了几个博客,觉的opencl这个可能会比较好整,就把opencv里面的opencl代码的部分编译了一下,这个比较少,用的时候也能直接检测出来i7 自带的集成显卡:

Device name:Intel(R) HD Graphics 4600

 

后面调试程序时候发现,2.4.4版本好像还没有直接能用的dll,2.4.10的build文件夹中就有可以直接调用的现成dll也不用编译了,很是方便!

 

参考文献:

http://blog.csdn.net/pengx17/article/details/7880642

 

参数设置:

ocl_stereo_match -l=view1.png -r=view5.png -m=BM -n=64 -o=output.jpg

 

 

 

 

// ocl_stereo_match.cpp : 定义控制台应用程序的入口点。
//

#include "stdafx.h"

#include 
#include 
#include 
#include 
#include 
#include "opencv2/ocl/ocl.hpp"
#include "opencv2/highgui/highgui.hpp"

#pragma comment(lib,"opencv_core2410d.lib")
#pragma comment(lib,"opencv_highgui2410d.lib")
#pragma comment(lib,"opencv_ocl2410d.lib")
#pragma comment(lib,"opencv_imgproc2410d.lib")

using namespace cv;
using namespace std;
using namespace ocl;


struct App
{
	App(CommandLineParser& cmd);
	void run();
	void handleKey(char key);
	void printParams() const;

	void workBegin()
	{
		work_begin = getTickCount();
	}
	void workEnd()
	{
		int64 d = getTickCount() - work_begin;
		double f = getTickFrequency();
		work_fps = f / d;
	}
	string method_str() const
	{
		switch (method)
		{
		case BM:
			return "BM";
		case BP:
			return "BP";
		case CSBP:
			return "CSBP";
		}
		return "";
	}
	string text() const
	{
		stringstream ss;
		ss << "(" << method_str() << ") FPS: " << setiosflags(ios::left)
			<< setprecision(4) << work_fps;
		return ss.str();
	}
private:
	bool running, write_once;

	Mat left_src, right_src;
	Mat left, right;
	oclMat d_left, d_right;

	StereoBM_OCL bm;
	StereoBeliefPropagation bp;
	StereoConstantSpaceBP csbp;

	int64 work_begin;
	double work_fps;

	string l_img, r_img;
	string out_img;
	enum {BM, BP, CSBP} method;
	int ndisp; // Max disparity + 1
	enum {GPU, CPU} type;
};

int main(int argc, char** argv)
{
	const char* keys =
		"{ h | help     | false                     | print help message }"
		"{ l | left     |                           | specify left image }"
		"{ r | right    |                           | specify right image }"
		"{ m | method   | BM                        | specify match method(BM/BP/CSBP) }"
		"{ n | ndisp    | 64                        | specify number of disparity levels }"
		"{ o | output   | stereo_match_output.jpg   | specify output path when input is images}";

	CommandLineParser cmd(argc, argv, keys);
	if (cmd.get("help"))
	{
		cout << "Available options:" << endl;
		cmd.printParams();
		return 0;
	}

	try
	{
		App app(cmd);
		cout << "Device name:" << cv::ocl::Context::getContext()->getDeviceInfo().deviceName << endl;

		app.run();
		getchar();
	}
	catch (const exception& e)
	{
		cout << "error: " << e.what() << endl;
	}

	return EXIT_SUCCESS;
}

App::App(CommandLineParser& cmd)
	: running(false),method(BM)
{
	cout << "stereo_match_ocl sample\n";
	cout << "\nControls:\n"
		<< "\tesc - exit\n"
		<< "\to - save output image once\n"
		<< "\tp - print current parameters\n"
		<< "\tg - convert source images into gray\n"
		<< "\tm - change stereo match method\n"
		<< "\ts - change Sobel prefiltering flag (for BM only)\n"
		<< "\t1/q - increase/decrease maximum disparity\n"
		<< "\t2/w - increase/decrease window size (for BM only)\n"
		<< "\t3/e - increase/decrease iteration count (for BP and CSBP only)\n"
		<< "\t4/r - increase/decrease level count (for BP and CSBP only)\n";

	l_img = cmd.get("l");
	r_img = cmd.get("r");
	string mstr = cmd.get("m");
	if(mstr == "BM") method = BM;
	else if(mstr == "BP") method = BP;
	else if(mstr == "CSBP") method = CSBP;
	else cout << "unknown method!\n";
	ndisp = cmd.get("n");
	out_img = cmd.get("o");
	write_once = false;
}


void App::run()
{
	// Load images
	cout< 1 || d_right.channels() > 1)
			{
				cout << "BM doesn't support color images\n";
				cvtColor(left_src, left, CV_BGR2GRAY);
				cvtColor(right_src, right, CV_BGR2GRAY);
				cout << "image_channels: " << left.channels() << endl;
				d_left.upload(left);
				d_right.upload(right);
				imshow("left", left);
				imshow("right", right);
			}
			bm(d_left, d_right, d_disp);
			break;
		case BP:
			bp(d_left, d_right, d_disp);
			break;
		case CSBP:
			csbp(d_left, d_right, d_disp);
			break;
		}

		// Show results
		d_disp.download(disp);
		workEnd();

		if (method != BM)
		{
			disp.convertTo(disp, 0);
		}
		putText(disp, text(), Point(5, 25), FONT_HERSHEY_SIMPLEX, 1.0, Scalar::all(255));
		imshow("disparity", disp);
		if(write_once)
		{
			imwrite(out_img, disp);
			write_once = false;
		}
		handleKey((char)waitKey(3));
	}
}


void App::printParams() const
{
	cout << "--- Parameters ---\n";
	cout << "image_size: (" << left.cols << ", " << left.rows << ")\n";
	cout << "image_channels: " << left.channels() << endl;
	cout << "method: " << method_str() << endl
		<< "ndisp: " << ndisp << endl;
	switch (method)
	{
	case BM:
		cout << "win_size: " << bm.winSize << endl;
		cout << "prefilter_sobel: " << bm.preset << endl;
		break;
	case BP:
		cout << "iter_count: " << bp.iters << endl;
		cout << "level_count: " << bp.levels << endl;
		break;
	case CSBP:
		cout << "iter_count: " << csbp.iters << endl;
		cout << "level_count: " << csbp.levels << endl;
		break;
	}
	cout << endl;
}


void App::handleKey(char key)
{
	switch (key)
	{
	case 27:
		running = false;
		break;
	case 'p':
	case 'P':
		printParams();
		break;
	case 'g':
	case 'G':
		if (left.channels() == 1 && method != BM)
		{
			left = left_src;
			right = right_src;
		}
		else
		{
			cvtColor(left_src, left, CV_BGR2GRAY);
			cvtColor(right_src, right, CV_BGR2GRAY);
		}
		d_left.upload(left);
		d_right.upload(right);
		cout << "image_channels: " << left.channels() << endl;
		imshow("left", left);
		imshow("right", right);
		break;
	case 'm':
	case 'M':
		switch (method)
		{
		case BM:
			method = BP;
			break;
		case BP:
			method = CSBP;
			break;
		case CSBP:
			method = BM;
			break;
		}
		cout << "method: " << method_str() << endl;
		break;
	case 's':
	case 'S':
		if (method == BM)
		{
			switch (bm.preset)
			{
			case StereoBM_OCL::BASIC_PRESET:
				bm.preset = StereoBM_OCL::PREFILTER_XSOBEL;
				break;
			case StereoBM_OCL::PREFILTER_XSOBEL:
				bm.preset = StereoBM_OCL::BASIC_PRESET;
				break;
			}
			cout << "prefilter_sobel: " << bm.preset << endl;
		}
		break;
	case '1':
		ndisp == 1 ? ndisp = 8 : ndisp += 8;
		cout << "ndisp: " << ndisp << endl;
		bm.ndisp = ndisp;
		bp.ndisp = ndisp;
		csbp.ndisp = ndisp;
		break;
	case 'q':
	case 'Q':
		ndisp = max(ndisp - 8, 1);
		cout << "ndisp: " << ndisp << endl;
		bm.ndisp = ndisp;
		bp.ndisp = ndisp;
		csbp.ndisp = ndisp;
		break;
	case '2':
		if (method == BM)
		{
			bm.winSize = min(bm.winSize + 1, 51);
			cout << "win_size: " << bm.winSize << endl;
		}
		break;
	case 'w':
	case 'W':
		if (method == BM)
		{
			bm.winSize = max(bm.winSize - 1, 2);
			cout << "win_size: " << bm.winSize << endl;
		}
		break;
	case '3':
		if (method == BP)
		{
			bp.iters += 1;
			cout << "iter_count: " << bp.iters << endl;
		}
		else if (method == CSBP)
		{
			csbp.iters += 1;
			cout << "iter_count: " << csbp.iters << endl;
		}
		break;
	case 'e':
	case 'E':
		if (method == BP)
		{
			bp.iters = max(bp.iters - 1, 1);
			cout << "iter_count: " << bp.iters << endl;
		}
		else if (method == CSBP)
		{
			csbp.iters = max(csbp.iters - 1, 1);
			cout << "iter_count: " << csbp.iters << endl;
		}
		break;
	case '4':
		if (method == BP)
		{
			bp.levels += 1;
			cout << "level_count: " << bp.levels << endl;
		}
		else if (method == CSBP)
		{
			csbp.levels += 1;
			cout << "level_count: " << csbp.levels << endl;
		}
		break;
	case 'r':
	case 'R':
		if (method == BP)
		{
			bp.levels = max(bp.levels - 1, 1);
			cout << "level_count: " << bp.levels << endl;
		}
		else if (method == CSBP)
		{
			csbp.levels = max(csbp.levels - 1, 1);
			cout << "level_count: " << csbp.levels << endl;
		}
		break;
	case 'o':
	case 'O':
		write_once = true;
		break;
	}
}

 

 

 

OpenCV+OpenCL stereo match 代码_第1张图片

你可能感兴趣的:(立体视觉,c++,立体匹配,OpenCL,OpenCV,计算机视觉OpenCV实现)