数据结构和算法系列16 哈夫曼树

这一篇要总结的是树中的最后一种,即哈夫曼树,我想从以下几点对其进行总结:

1,什么是哈夫曼树?

2,如何构建哈夫曼树?

3,哈夫曼编码?

4,算法实现?

一,什么是哈夫曼树

什么是哈夫曼树呢?

哈夫曼树是一种带权路径长度最短的二叉树,也称为最优二叉树。下面用一幅图来说明。

数据结构和算法系列16 哈夫曼树_第1张图片

它们的带权路径长度分别为:

图a: WPL=5*2+7*2+2*2+13*2=54

图b: WPL=5*3+2*3+7*2+13*1=48

可见,图b的带权路径长度较小,我们可以证明图b就是哈夫曼树(也称为最优二叉树)。

二,如何构建哈夫曼树

一般可以按下面步骤构建:

1,将所有左,右子树都为空的作为根节点。

2,在森林中选出两棵根节点的权值最小的树作为一棵新树的左,右子树,且置新树的附加根节点的权值为其左,右子树上根节点的权值之和。注意,左子树的权值应小于右子树的权值。

3,从森林中删除这两棵树,同时把新树加入到森林中。

4,重复2,3步骤,直到森林中只有一棵树为止,此树便是哈夫曼树。

下面是构建哈夫曼树的图解过程:

数据结构和算法系列16 哈夫曼树_第2张图片

三,哈夫曼编码

利用哈夫曼树求得的用于通信的二进制编码称为哈夫曼编码。树中从根到每个叶子节点都有一条路径,对路径上的各分支约定指向左子树的分支表示”0”码,指向右子树的分支表示“1”码,取每条路径上的“0”或“1”的序列作为各个叶子节点对应的字符编码,即是哈夫曼编码。

就拿上图例子来说:

A,B,C,D对应的哈夫曼编码分别为:111,10,110,0

用图说明如下:

数据结构和算法系列16 哈夫曼树_第3张图片

记住,设计电文总长最短的二进制前缀编码,就是以n个字符出现的频率作为权构造一棵哈夫曼树,由哈夫曼树求得的编码就是哈夫曼编码。

四,算法实现

C#版:

namespace HuffTree.CSharp
{
    class Program
    {
        static void Main(string[] args)
        {
            //四个叶子节点
            int leafNum = 4;

            //赫夫曼树的节点总数
            int totalNodes = 2 * leafNum - 1;

            //各叶子节点的权值
            int[] weight = new int[] { 5,7,2,13};

            //各叶子节点的值
            string[] alphabet = new string[] { "A","B","C","D"};

            //初始化赫夫曼树
            HuffmanTree[] huffmanTree = new HuffmanTree[totalNodes].Select(p => new HuffmanTree() { }).ToArray();

            //构建赫夫曼树
            HuffmanTreeBLL.Create(huffmanTree,leafNum,weight);

            //赫夫曼编码
            string[] huffmanCode = HuffmanTreeBLL.Coding(huffmanTree,leafNum);

            //打印结果
            PrintResult(alphabet,huffmanTree,huffmanCode,leafNum);

            Console.ReadKey();
        }

        /// 
        /// 打印结果
        /// 
        /// 
        /// 
        /// 
        /// 
        private static void PrintResult(string[] alphabet,HuffmanTree[] huffmanTree,string[] huffmanCode,int leafNum)
        {
            if (alphabet.Count() < 1 || huffmanTree.Count() < 1 || huffmanCode.Count() < 1) return;

            for (int i = 0; i < leafNum; i++)
            {
                Console.WriteLine("字符:{0},权重值:{1},赫夫曼编码:{2}",alphabet[i],huffmanTree[i].Weight,huffmanCode[i]);
            }
        }
    }
}

namespace DS.BLL
{
    /// 
    /// 描述:赫夫曼树操作类
    /// 作者:鲁宁
    /// 时间:2013/9/17 18:14:33
    /// 
    public class HuffmanTreeBLL
    {
        /// 
        /// 构建赫夫曼树
        /// 思路:一步一步向上搭建
        /// 
        /// 待操作的赫夫曼树
        /// 叶节点数量
        /// 节点权重值
        /// 构建好的赫夫曼树
        public static HuffmanTree[] Create(HuffmanTree[] huffmanTree, int leafNum, int[] weight)
        {
            //获取赫夫曼树结点总数
            int totalNodes = 2 * leafNum - 1;

            InitLeafNode(huffmanTree,leafNum,weight);
            
            //构造赫夫曼树(4个节点只需要3步就可以完成构建)
            for (int i = leafNum; i < totalNodes; i++)
            { 
                //获取权重最小的两个叶子节点的下标
                int minIndex1 = -1;
                int minIndex2 = -1;
                SelectNode(huffmanTree,i,ref minIndex1,ref minIndex2);

                huffmanTree[minIndex1].Parent = i;
                huffmanTree[minIndex2].Parent = i;

                huffmanTree[i].Left = minIndex1;
                huffmanTree[i].Right = minIndex2;
                huffmanTree[i].Weight = huffmanTree[minIndex1].Weight + huffmanTree[minIndex2].Weight;
            }
            return huffmanTree;
        }

        /// 
        /// 赫夫曼编码
        /// 思路:左子树为0,右子树为1,对应的编码后的规则是:从根节点到子节点
        /// 
        /// 待操作的赫夫曼树
        /// 叶子节点的数量
        /// 赫夫曼编码
        public static string[] Coding(HuffmanTree[] huffmanTree, int leafNum)
        { 
            string[] huffmanCode= new string[leafNum];

            //当前节点下标
            int current = 0;
            //父节点下标
            int parent = 0;

            for (int i = 0; i < leafNum; i++)
            {
                string codeTemp = string.Empty;
                current = i;
                
                //第一次获取最左节点
                parent = huffmanTree[current].Parent;

                while (parent != 0)
                {
                    if (huffmanTree[parent].Left == current) codeTemp += "0";
                    else codeTemp += "1";

                    current = parent;
                    parent = huffmanTree[parent].Parent;
                }
                huffmanCode[i] = new string(codeTemp.Reverse().ToArray());
            }
            return huffmanCode;
        }


        /// 
        /// 初始化叶节点
        /// 
        /// 
        /// 
        /// 
        private static void InitLeafNode(HuffmanTree[] huffmanTree, int leafNum, int[] weight)
        {
            if (huffmanTree == null || leafNum<1 || weight.Count()<1) return;

            for (int i = 0; i < leafNum; i++)
            {
                huffmanTree[i].Weight = weight[i];
            }
        }

        /// 
        /// 获取叶子节点中权重最小的两个节点
        /// 
        /// 待操作的赫夫曼
        /// 要查找的节点数
        /// 
        /// 
        private static void SelectNode(HuffmanTree[] huffmanTree, int searchNode, ref int minIndex1, ref int minIndex2)
        {
            HuffmanTree minNode1 = null;
            HuffmanTree minNode2 = null;

            for (int i = 0; i < searchNode; i++)
            {
                //只查找独根树叶子节点
                if (huffmanTree[i].Parent == 0)
                {
                    //如果为null,则表示当前节叶子节点最小
                    if (minNode1 == null)
                    {
                        minIndex1 = i;
                        minNode1= huffmanTree[i];
                        continue;
                    }

                    if (minNode2 == null)
                    {
                        minIndex2 = i;
                        minNode2= huffmanTree[i];

                        //交换位置,确保minIndex1为最小
                        if (minNode1.Weight >= minNode2.Weight)
                        { 
                            //节点交换
                            var temp = minNode1;
                            minNode1 = minNode2;
                            minNode2 = temp;

                            //交换下标
                            var tempIndex = minIndex1;
                            minIndex1 = minIndex2;
                            minIndex2 = tempIndex;

                            continue;
                        }
                    }

                    if (minNode1 != null && minNode2 != null)
                    {
                        if (huffmanTree[i].Weight < minNode1.Weight) //注意,不能是“<=”
                        {
                            //将min1临时转存给min2
                            minNode2 = minNode1;
                            minNode1 = huffmanTree[i];

                            //记录在数组中的下标
                            minIndex2 = minIndex1;
                            minIndex1 = i;
                        }
                        else
                        {
                            if (huffmanTree[i].Weight < minNode2.Weight)
                            { 
                                minNode2= huffmanTree[i];
                                minIndex2 = i;
                            }
                        }
                    }
                }
            }
        }
    }

    /// 
    /// 赫夫曼树存储结构
    /// 
    public class HuffmanTree
    {
        public int Weight { get; set; } //权值

        public int Parent { get; set; } //父节点

        public int Left { get; set; } //左孩子节点

        public int Right { get; set; } //右孩子节点
    }
}

程序输出结果为:

数据结构和算法系列16 哈夫曼树_第4张图片

转载于:https://www.cnblogs.com/mcgrady/p/3329825.html

你可能感兴趣的:(数据结构和算法系列16 哈夫曼树)