图像去噪的方法很多,如中值滤波,高斯滤波,维纳滤波等等。但这些降噪方法容易模糊图片的边缘细节,对于高频细节的保护效果并不明显。相比较而言,bilateral filter双边滤波器可以很好的边缘保护,即可以在去噪的同时,保护图像的边缘特性。双边滤波(Bilateral filter)是一种非线性的滤波方法,是结合图像的空间邻近度和像素值相似度的一种折衷处理,同时考虑空域信息和灰度相似性,达到保边去噪的目的。
空间域sigma选取:其中核大小通常为sigma的6*sigma + 1。因为离中心点3*sigma大小之外的系数与中点的系数只比非常小,可以认为此之外的点与中心点没有任何联系,及权重系数为0.OpenCV中默认的计算公式也是如此,OpenCV参考文档内容如下:“对应高斯参数的 Gaussian sigma (标准差). 如果为零,则标准差由下面的核尺寸计算: sigma = (n/2 - 1)*0.3 + 0.8, 其中 n=param1 对应水平核,n=param2对应垂直核.”
值域sigma选取:另灰度差△g = abs(gray(xi,yi)- gray(xc,yc)),
Sigma越大,边缘越模糊,极限情况为simga无穷大,值域系数近似相等(忽略常数时,将近为exp(0)= 1),与高斯模板(空间域模板)相乘后可认为等效于高斯滤波。
Sigma越小,边缘越清晰,极限情况为simga无限接近0,值域系数近似相等(接近exp(-∞) = 0),与高斯模板(空间域模板)相乘后,可近似为系数皆相等,等效于源图像。
InputArray src: 输入图像,可以是Mat类型,图像必须是8位或浮点型单通道、三通道的图像。
OutputArray dst: 输出图像,和原图像有相同的尺寸和类型。
int d: 表示在过滤过程中每个像素邻域的直径范围。如果这个值是非正数,则函数会从第五个参数sigmaSpace计算该值。
double sigmaColor: 颜色空间过滤器的sigma值,这个参数的值月大,表明该像素邻域内有越宽广的颜色会被混合到一起,产生较大的半相等颜色区域。 (这个参数可以理解为值域核的)
double sigmaSpace: 坐标空间中滤波器的sigma值,如果该值较大,则意味着越远的像素将相互影响,从而使更大的区域中足够相似的颜色获取相同的颜色。当d>0时,d指定了邻域大小且与sigmaSpace无关,否则d正比于sigmaSpace. (这个参数可以理解为空间域核的)
int borderType=BORDER_DEFAULT: 用于推断图像外部像素的某种边界模式,有默认值BORDER_DEFAULT.
双边滤波器可以很好的保存图像边缘细节而滤除掉低频分量的噪音,但是双边滤波器的效率不是太高,花费的时间相较于其他滤波器而言也比较长。
对于简单的滤波而言,可以将两个sigma值设置成相同的值,如果值<10,则对滤波器影响很小,如果值>150则会对滤波器产生较大的影响,会使图片看起来像卡通。
参数mask,是掩模图像,它的大小是输入图像的长宽左右各加1个像素,mask一方面作为输入的掩模图像,另一方面也会在填充的过程中不断被更新。floodFill漫水填充的过程并不会填充mask上灰度值不为0的像素点,所以可以使用一个图像边缘检测的输出作为mask,这样填充就不会填充或越过边缘轮廓。mask在填充的过程中被更新的过程是这样的:每当一个原始图上一个点位(x,y)被填充之后,该点位置对应的mask上的点(x+1,y+1)的灰度值随机被设置为1(原本该点的灰度值为0),代表该点已经被填充处理过。
可以利用均值偏移算法的这个特性,实现彩色图像分割,Opencv中对应的函数是pyrMeanShiftFiltering。这个函数严格来说并不是图像的分割,而是图像在色彩层面的平滑滤波,它可以中和色彩分布相近的颜色,平滑色彩细节,侵蚀掉面积较小的颜色区域,所以在Opencv中它的后缀是滤波“Filter”,而不是分割“segment”。先列一下这个函数,再说一下它“分割”彩色图像的实现过程。
第一个参数src,输入图像,8位,三通道的彩色图像,并不要求必须是RGB格式,HSV、YUV等Opencv中的彩色图像格式均可;
第二个参数dst,输出图像,跟输入src有同样的大小和数据格式;
第三个参数sp,定义的漂移物理空间半径大小;
第四个参数sr,定义的漂移色彩空间半径大小;
第五个参数maxLevel,定义金字塔的最大层数;
第六个参数termcrit,定义的漂移迭代终止条件,可以设置为迭代次数满足终止,迭代目标与中心点偏差满足终止,或者两者的结合;
#File Name : 第八课.py
# 保留边缘滤波
#双边滤波与高斯滤波器相比,对于图像的边缘信息能过更好的保存。其原理为一个与空间距离相关的高斯函数与一个灰度距离相关的高斯函数相乘。
import cv2 as cv
import numpy as np
def bi_demo(image):
# 高斯双边 相当于 磨皮
dst = cv.bilateralFilter(image,0,150,15)
cv.imshow('bi_demo',dst)
def shift_demo(image):
# 均值 迁移
dst = cv.pyrMeanShiftFiltering(image,50,50)
cv.imshow('men',dst)
src = cv.imread('G:/openCV/opencv/sources/samples/data/mopi.jpg')
cv.namedWindow('input image',cv.WINDOW_AUTOSIZE)
cv.imshow('input image',src)
bi_demo(src)
#shift_demo(src)
cv.waitKey(0)