MapReduce计数器详解

计数器:计数器是用来记录job的执行进度和状态的。它的作用可以理解为日志。我们通常可以在程序的某个位置插入计数器,用来记录数据或者进度的变化情况,它比日志更便利进行分析。


1. 内置计数器

Hadoop其实内置了很多计数器,那么这些计数器在哪看呢?

我们先来看下最简单的wordcount程序。

HDFS上的源文件:

[hadoop@master logfile]$ hadoop fs -cat  /MR_Counter/diary
Today is 2016-3-22
I study mapreduce counter
I realized that mapreduce counter is simple

WordCount.java:

package com.oner.mr.mrcounter;

import java.io.IOException;
import java.net.URI;
import java.net.URISyntaxException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;

public class WordCount {

	public static void main(String[] args) throws IOException,
			InterruptedException, URISyntaxException, ClassNotFoundException {
		Path inPath = new Path("/MR_Counter/");// 输入目录
		Path outPath = new Path("/MR_Counter/out");// 输出目录

		Configuration conf = new Configuration();
		// conf.set("fsdefaultFS", "hdfs://master:9000");
		FileSystem fs = FileSystem.get(new URI("hdfs://master:9000"), conf,
				"hadoop");
		if (fs.exists(outPath)) {// 如果输出目录已存在,则删除
			fs.delete(outPath, true);
		}

		Job job = Job.getInstance(conf);

		job.setJarByClass(WordCount.class);

		job.setMapperClass(MyMapper.class);
		job.setReducerClass(MyReducer.class);

		job.setMapOutputKeyClass(Text.class);
		job.setMapOutputValueClass(LongWritable.class);

		job.setOutputKeyClass(Text.class);
		job.setOutputValueClass(LongWritable.class);

		job.setInputFormatClass(TextInputFormat.class);
		job.setOutputFormatClass(TextOutputFormat.class);

		FileInputFormat.setInputPaths(job, inPath);
		FileOutputFormat.setOutputPath(job, outPath);

		job.waitForCompletion(true);
	}

	public static class MyMapper extends
			Mapper {

		private static Text k = new Text();
		private static LongWritable v = new LongWritable(1);

		@Override
		protected void map(LongWritable key, Text value, Context context)
				throws IOException, InterruptedException {
			String line = value.toString();
			String[] words = line.split(" ");
			for (String word : words) {
				k.set(word);
				context.write(k, v);
			}
		}
	}

	public static class MyReducer extends
			Reducer {

		private static LongWritable v = new LongWritable();

		@Override
		protected void reduce(Text key, Iterable values,
				Reducer.Context context)
				throws IOException, InterruptedException {
			int sum = 0;
			for (LongWritable value : values) {
				sum += value.get();
			}

			v.set(sum);

			context.write(key, v);
		}
	}

}


打成jar包后执行: hadoop jar wc.jar com.oner.mr.mrcounter.WordCount

发现有如下信息(注释部分是自己加的):

16/03/22 14:25:30 INFO mapreduce.Job: Counters: 49 // 表示本次job共49个计数器
	File System Counters // 文件系统计数器
		FILE: Number of bytes read=235
		FILE: Number of bytes written=230421
		FILE: Number of read operations=0
		FILE: Number of large read operations=0
		FILE: Number of write operations=0
		HDFS: Number of bytes read=189
		HDFS: Number of bytes written=86
		HDFS: Number of read operations=6
		HDFS: Number of large read operations=0
		HDFS: Number of write operations=2
	Job Counters // 作业计数器
		Launched map tasks=1 // 启动的map数为1
		Launched reduce tasks=1 // 启动的reduce数为1
		Data-local map tasks=1 
		Total time spent by all maps in occupied slots (ms)=12118
		Total time spent by all reduces in occupied slots (ms)=11691
		Total time spent by all map tasks (ms)=12118
		Total time spent by all reduce tasks (ms)=11691
		Total vcore-seconds taken by all map tasks=12118
		Total vcore-seconds taken by all reduce tasks=11691
		Total megabyte-seconds taken by all map tasks=12408832
		Total megabyte-seconds taken by all reduce tasks=11971584
	Map-Reduce Framework //MapReduce框架计数器
		Map input records=3
		Map output records=14
		Map output bytes=201
		Map output materialized bytes=235
		Input split bytes=100
		Combine input records=0
		Combine output records=0
		Reduce input groups=10
		Reduce shuffle bytes=235
		Reduce input records=14
		Reduce output records=10
		Spilled Records=28
		Shuffled Maps =1
		Failed Shuffles=0
		Merged Map outputs=1
		GC time elapsed (ms)=331
		CPU time spent (ms)=2820
		Physical memory (bytes) snapshot=306024448
		Virtual memory (bytes) snapshot=1690583040
		Total committed heap usage (bytes)=136122368
	Shuffle Errors // Shuffle错误计数器
		BAD_ID=0
		CONNECTION=0
		IO_ERROR=0
		WRONG_LENGTH=0
		WRONG_MAP=0
		WRONG_REDUCE=0
	File Input Format Counters // 文件输入格式计数器
		Bytes Read=89 // Map从HDFS上读取的字节数,共89个字节
	File Output Format Counters // 文件输出格式计数器
		Bytes Written=86 //Reduce输出到HDFS上的字节数,共86个字节

上面的信息就是内置计数器的一些信息,包括:

文件系统计数器(File System Counters)

作业计数器(Job Counters)

MapReduce框架计数器(Map-Reduce Framework)

Shuffle 错误计数器(Shuffle Errors)

文件输入格式计数器(File Output Format Counters)

文件输出格式计数器(File Input Format Counters)


2. 自定义计数器

Hadoop也支持自定义计数器,在Hadoop2.x中可以使用Context的getCounter()方法(其实是接口TaskAttemptContext的方法,Context继承了该接口)得到自定义计数器。

public Counter getCounter(Enum counterName):Get the Counter for the given counterName

public Counter getCounter(String groupName, String counterName):Get the Counter for the given groupName and counterName

由此可见,可以通过枚举或者字符串来得到计数器。

计数器常见的方法有几下几个:

String getName():Get the name of the counter

String getDisplayName():Get the display name of the counter

long getValue():Get the current value

void setValue(long value):Set this counter by the given value

void increment(long incr):Increment this counter by the given value


假设现在要在控制台输出源文件中的一些敏感词的个数,这里设定“mapreduce”为敏感词,该如何做呢?

package com.oner.mr.mrcounter;

import java.io.IOException;
import java.net.URI;
import java.net.URISyntaxException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Counter;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;

public class WordCount {

	public static void main(String[] args) throws IOException,
			InterruptedException, URISyntaxException, ClassNotFoundException {
		Path inPath = new Path("/MR_Counter/");// 输入目录
		Path outPath = new Path("/MR_Counter/out");// 输出目录

		Configuration conf = new Configuration();
		// conf.set("fsdefaultFS", "hdfs://master:9000");
		FileSystem fs = FileSystem.get(new URI("hdfs://master:9000"), conf,
				"hadoop");
		if (fs.exists(outPath)) {// 如果输出目录已存在,则删除
			fs.delete(outPath, true);
		}

		Job job = Job.getInstance(conf);

		job.setJarByClass(WordCount.class);

		job.setMapperClass(MyMapper.class);
		job.setReducerClass(MyReducer.class);

		job.setMapOutputKeyClass(Text.class);
		job.setMapOutputValueClass(LongWritable.class);

		job.setOutputKeyClass(Text.class);
		job.setOutputValueClass(LongWritable.class);

		job.setInputFormatClass(TextInputFormat.class);
		job.setOutputFormatClass(TextOutputFormat.class);

		FileInputFormat.setInputPaths(job, inPath);
		FileOutputFormat.setOutputPath(job, outPath);

		job.waitForCompletion(true);

	}

	public static class MyMapper extends
			Mapper {

		private static Text k = new Text();
		private static LongWritable v = new LongWritable(1);

		@Override
		protected void map(LongWritable key, Text value, Context context)
				throws IOException, InterruptedException {

			Counter sensitiveCounter = context.getCounter("Sensitive Words:",
					"mapreduce");// 创建一个组是Sensitive Words,名是mapreduce的计数器

			String line = value.toString();
			String[] words = line.split(" ");

			for (String word : words) {
				if (word.equalsIgnoreCase("mapreduce")) {//如果出现了mapreduce,则计数器值加1
					sensitiveCounter.increment(1L);
				}
				k.set(word);
				context.write(k, v);
			}
		}
	}

	public static class MyReducer extends
			Reducer {

		private static LongWritable v = new LongWritable();

		@Override
		protected void reduce(Text key, Iterable values,
				Reducer.Context context)
				throws IOException, InterruptedException {
			int sum = 0;
			for (LongWritable value : values) {
				sum += value.get();
			}

			v.set(sum);

			context.write(key, v);
		}
	}

}

打成jar包后重新执行,发现控制台中确实多了一组计数器Sensitive Words:,其中有一个名叫mapreduce的计数器,值为2。

MapReduce计数器详解_第1张图片


你可能感兴趣的:(Hadoop)