Collection是一个接口,它主要的两个分支是List和Set。如下图所示:
List和Set都是接口,它们继承与Collection。List是有序的队列,可以用重复的元素;而Set是数学概念中的集合,不能有重复的元素。List和Set都有它们各自的实现类。
为了方便,我们抽象出AbstractCollection类来让其他类继承,该类实现类Collection中的绝大部分方法。AbstractList和AbstractSet都继承与AbstractCollection,具体的List实现类继承与AbstractList,而Set的实现类则继承与AbstractSet。
另外,Collection中有个iterator()方法,它的作用是返回一个Iterator接口。通常,我们通过Iterator迭代器来遍历集合。ListIterator是List接口所特有的,在List接口中,通过ListIterator()返回一个ListIterator对象。
我们首先来阅读下这些 接口和抽象类以及他们的实现类中都有哪些方法:
Collection的定义如下:
public interface Collection extends Iterable {}
从它的定义中可以看出,Collection是一个接口。它是一个高度抽象出来的集合,包含了集合的基本操作:添加、删除、清空、遍历、是否为空、获取大小等。
Collection接口的所有子类(直接子类和简介子类)都必须实现2种构造函数:不带参数的构造函数和参数为Collection的构造函数。带参数的构造函数可以用来转换Collection的类型。下面是Collection接口中定义的API:
// Collection的API
abstract boolean add(E object)
abstract boolean addAll(Collection extends E> collection)
abstract void clear()
abstract boolean contains(Object object)
abstract boolean containsAll(Collection> collection)
abstract boolean equals(Object object)
abstract int hashCode()
abstract boolean isEmpty()
abstract Iterator iterator()
abstract boolean remove(Object object)
abstract boolean removeAll(Collection> collection)
abstract boolean retainAll(Collection> collection)
abstract int size()
abstract T[] toArray(T[] array)
abstract Object[] toArray()
List的定义如下:
public interface List extends Collection {}
从List定义中可以看出,它继承与Collection接口,即List是集合的一种。List是有序的队列,List中的每一个元素都有一个索引,第一个元素的索引值为0,往后的元素的索引值依次+1.,List中允许有重复的元素。
List继承Collection自然包含了Collection的所有接口,由于List是有序队列,所以它也有自己额外的API接口。API如下:
// Collection的API
abstract boolean add(E object)
abstract boolean addAll(Collection extends E> collection)
abstract void clear()
abstract boolean contains(Object object)
abstract boolean containsAll(Collection> collection)
abstract boolean equals(Object object)
abstract int hashCode()
abstract boolean isEmpty()
abstract Iterator iterator()
abstract boolean remove(Object object)
abstract boolean removeAll(Collection> collection)
abstract boolean retainAll(Collection> collection)
abstract int size()
abstract T[] toArray(T[] array)
abstract Object[] toArray()
// 相比与Collection,List新增的API:
abstract void add(int location, E object) //在指定位置添加元素
abstract boolean addAll(int location, Collection extends E> collection) //在指定位置添加其他集合中的元素
abstract E get(int location) //获取指定位置的元素
abstract int indexOf(Object object) //获得指定元素的索引
abstract int lastIndexOf(Object object) //从右边的索引
abstract ListIterator listIterator(int location) //获得iterator
abstract ListIterator listIterator()
abstract E remove(int location) //删除指定位置的元素
abstract E set(int location, E object) //修改指定位置的元素
abstract List subList(int start, int end) //获取子list
Set的定义如下:
public interface Set extends Collection {}
Set也继承与Collection接口,且里面不能有重复元素。关于API,Set与Collection的API完全一样,不在赘述。
public abstract class AbstractCollection implements Collection {}
AbstractCollection是一个抽象类,它实现了Collection中除了iterator()和size()之外的所有方法。AbstractCollection的主要作用是方便其他类实现Collection.,比如ArrayList、LinkedList等。它们想要实现Collection接口,通过集成AbstractCollection就已经实现大部分方法了,再实现一下iterator()和size()即可。
下面看一下AbstractCollection实现的部分方法的源码:
public abstract class AbstractCollection implements Collection {
protected AbstractCollection() {
}
public abstract Iterator iterator();//iterator()方法没有实现
public abstract int size(); //size()方法也没有实现
public boolean isEmpty() { //检测集合是否为空
return size() == 0;
}
/*检查集合中是否包含特定对象*/
public boolean contains(Object o) {
Iterator it = iterator();
if (o==null) {
while (it.hasNext()) //从这里可以看出,任何非空集合都包含null
if (it.next()==null)
return true;
} else {
while (it.hasNext())
if (o.equals(it.next()))
return true;
}
return false;
}
/*将集合转变成数组*/
public Object[] toArray() {
// Estimate size of array; be prepared to see more or fewer elements
Object[] r = new Object[size()]; //创建与集合大小相同的数组
Iterator it = iterator();
for (int i = 0; i < r.length; i++) {
if (! it.hasNext()) // fewer elements than expected
//Arrays.copy(**,**)的第二个参数是待copy的长度,如果这个长度大于r,则保留r的长度
return Arrays.copyOf(r, i);
r[i] = it.next();
}
return it.hasNext() ? finishToArray(r, it) : r;
}
public T[] toArray(T[] a) {
// Estimate size of array; be prepared to see more or fewer elements
int size = size();
T[] r = a.length >= size ? a :
(T[])java.lang.reflect.Array
.newInstance(a.getClass().getComponentType(), size);
Iterator it = iterator();
for (int i = 0; i < r.length; i++) {
if (! it.hasNext()) { // fewer elements than expected
if (a == r) {
r[i] = null; // null-terminate
} else if (a.length < i) {
return Arrays.copyOf(r, i);
} else {
System.arraycopy(r, 0, a, 0, i);
if (a.length > i) {
a[i] = null;
}
}
return a;
}
r[i] = (T)it.next();
}
// more elements than expected
return it.hasNext() ? finishToArray(r, it) : r;
}
private static T[] finishToArray(T[] r, Iterator> it) {
int i = r.length;
while (it.hasNext()) {
int cap = r.length;
if (i == cap) {
int newCap = cap + (cap >> 1) + 1;
// overflow-conscious code
if (newCap - MAX_ARRAY_SIZE > 0)
newCap = hugeCapacity(cap + 1);
r = Arrays.copyOf(r, newCap);
}
r[i++] = (T)it.next();
}
// trim if overallocated
return (i == r.length) ? r : Arrays.copyOf(r, i);
}
private static int hugeCapacity(int minCapacity) {
if (minCapacity < 0) // overflow
throw new OutOfMemoryError
("Required array size too large");
return (minCapacity > MAX_ARRAY_SIZE) ?
Integer.MAX_VALUE :
MAX_ARRAY_SIZE;
}
// 删除对象o
public boolean remove(Object o) {
Iterator it = iterator();
if (o==null) {
while (it.hasNext()) {
if (it.next()==null) {
it.remove();
return true;
}
}
} else {
while (it.hasNext()) {
if (o.equals(it.next())) {
it.remove();
return true;
}
}
}
return false;
}
// 判断是否包含集合c中所有元素
public boolean containsAll(Collection> c) {
for (Object e : c)
if (!contains(e))
return false;
return true;
}
//添加集合c中所有元素
public boolean addAll(Collection extends E> c) {
boolean modified = false;
for (E e : c)
if (add(e))
modified = true;
return modified;
}
//删除集合c中所有元素(如果存在的话)
public boolean removeAll(Collection> c) {
boolean modified = false;
Iterator> it = iterator();
while (it.hasNext()) {
if (c.contains(it.next())) {
it.remove();
modified = true;
}
}
return modified;
}
//清空
public void clear() {
Iterator it = iterator();
while (it.hasNext()) {
it.next();
it.remove();
}
}
//将集合元素显示成[String]
public String toString() {
Iterator it = iterator();
if (! it.hasNext())
return "[]";
StringBuilder sb = new StringBuilder();
sb.append('[');
for (;;) {
E e = it.next();
sb.append(e == this ? "(this Collection)" : e);
if (! it.hasNext())
return sb.append(']').toString();
sb.append(',').append(' ');
}
}
}
AbstractList的定义如下:
public abstract class AbstractList extends AbstractCollection implements List {}
从定义中可以看出,AbstractList是一个继承AbstractCollection,并且实现了List接口的抽象类。它实现了List中除了size()、get(int location)之外的方法。
AbstractList的主要作用:它实现了List接口中的大部分函数,从而方便其它类继承List。另外,和AbstractCollection相比,AbstractList抽象类中,实现了iterator()方法。
AbstractList抽象类的源码如下:
public abstract class AbstractList extends AbstractCollection implements List {
protected AbstractList() {
}
public boolean add(E e) {
add(size(), e);
return true;
}
abstract public E get(int index);
public E set(int index, E element) {
throw new UnsupportedOperationException();
}
public void add(int index, E element) {
throw new UnsupportedOperationException();
}
public E remove(int index) {
throw new UnsupportedOperationException();
}
/***************************** Search Operations**********************************/
public int indexOf(Object o) { //搜索对象o的索引
ListIterator it = listIterator();
if (o==null) {
while (it.hasNext())
if (it.next()==null) //执行it.next(),会先返回it指向位置的值,然后it会移到下一个位置
return it.previousIndex(); //所以要返回it.previousIndex(); 关于it几个方法的源码在下面
} else {
while (it.hasNext())
if (o.equals(it.next()))
return it.previousIndex();
}
return -1;
}
public int lastIndexOf(Object o) {
ListIterator it = listIterator(size());
if (o==null) {
while (it.hasPrevious())
if (it.previous()==null)
return it.nextIndex();
} else {
while (it.hasPrevious())
if (o.equals(it.previous()))
return it.nextIndex();
}
return -1;
}
/**********************************************************************************/
/****************************** Bulk Operations ***********************************/
public void clear() {
removeRange(0, size());
}
public boolean addAll(int index, Collection extends E> c) {
rangeCheckForAdd(index);
boolean modified = false;
for (E e : c) {
add(index++, e);
modified = true;
}
return modified;
}
protected void removeRange(int fromIndex, int toIndex) {
ListIterator it = listIterator(fromIndex);
for (int i=0, n=toIndex-fromIndex; i iterator() {
return new Itr();
}
public ListIterator listIterator() {
return listIterator(0); //返回的iterator索引从0开始
}
public ListIterator listIterator(final int index) {
rangeCheckForAdd(index); //首先检查index范围是否正确
return new ListItr(index); //ListItr继承与Itr且实现了ListIterator接口,Itr实现了Iterator接口,往下看
}
private class Itr implements Iterator {
int cursor = 0; //元素的索引,当调用next()方法时,返回当前索引的值
int lastRet = -1; //lastRet也是元素的索引,但如果删掉此元素,该值置为-1
/*
*迭代器都有个modCount值,在使用迭代器的时候,如果使用remove,add等方法的时候都会修改modCount,
*在迭代的时候需要保持单线程的唯一操作,如果期间进行了插入或者删除,modCount就会被修改,迭代器就会检测到被并发修改,从而出现运行时异常。
*举个简单的例子,现在某个线程正在遍历一个List,另一个线程对List中的某个值做了删除,那原来的线程用原来的迭代器当然无法正常遍历了
*/
int expectedModCount = modCount;
public boolean hasNext() {
return cursor != size(); //当索引值和元素个数相同时表示没有下一个元素了,索引是从0到size-1
}
public E next() {
checkForComodification(); //检查modCount是否改变
try {
int i = cursor; //next()方法主要做了两件事:
E next = get(i);
lastRet = i;
cursor = i + 1; //1.将索引指向了下一个位置
return next; //2. 返回当前索引的值
} catch (IndexOutOfBoundsException e) {
checkForComodification();
throw new NoSuchElementException();
}
}
public void remove() {
if (lastRet < 0) //lastRet<0表示已经不存在了
throw new IllegalStateException();
checkForComodification();
try {
AbstractList.this.remove(lastRet);
if (lastRet < cursor)
cursor--; //原位置的索引值减小了1,但是实际位置没变
lastRet = -1; //置为-1表示已删除
expectedModCount = modCount;
} catch (IndexOutOfBoundsException e) {
throw new ConcurrentModificationException();
}
}
final void checkForComodification() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
}
}
private class ListItr extends Itr implements ListIterator {
ListItr(int index) {
cursor = index;
}
public boolean hasPrevious() {
return cursor != 0;
}
public E previous() {
checkForComodification();
try {
int i = cursor - 1; //previous()方法中也做了两件事:
E previous = get(i); //1. 将索引向前移动一位
lastRet = cursor = i; //2. 返回索引处的值
return previous;
} catch (IndexOutOfBoundsException e) {
checkForComodification();
throw new NoSuchElementException();
}
}
public int nextIndex() { //iterator中的index本来就是下一个位置,在next()方法中可以看出
return cursor;
}
public int previousIndex() {
return cursor-1;
}
public void set(E e) { //修改当前位置的元素
if (lastRet < 0)
throw new IllegalStateException();
checkForComodification();
try {
AbstractList.this.set(lastRet, e);
expectedModCount = modCount;
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
}
public void add(E e) { //在当前位置添加元素
checkForComodification();
try {
int i = cursor;
AbstractList.this.add(i, e);
lastRet = -1;
cursor = i + 1;
expectedModCount = modCount;
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
}
}
/**********************************************************************************/
//获得子List,详细源码往下看SubList类
public List subList(int fromIndex, int toIndex) {
return (this instanceof RandomAccess ?
new RandomAccessSubList<>(this, fromIndex, toIndex) :
new SubList<>(this, fromIndex, toIndex));
}
/*************************** Comparison and hashing *******************************/
public boolean equals(Object o) {
if (o == this)
return true;
if (!(o instanceof List))
return false;
ListIterator e1 = listIterator();
ListIterator e2 = ((List) o).listIterator();
while (e1.hasNext() && e2.hasNext()) {
E o1 = e1.next();
Object o2 = e2.next();
if (!(o1==null ? o2==null : o1.equals(o2)))
return false;
}
return !(e1.hasNext() || e2.hasNext());
}
public int hashCode() { //hashcode
int hashCode = 1;
for (E e : this)
hashCode = 31*hashCode + (e==null ? 0 : e.hashCode());
return hashCode;
}
/**********************************************************************************/
protected transient int modCount = 0;
private void rangeCheckForAdd(int index) {
if (index < 0 || index > size())
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}
private String outOfBoundsMsg(int index) {
return "Index: "+index+", Size: "+size();
}
}
class SubList extends AbstractList {
private final AbstractList l;
private final int offset;
private int size;
/* 从SubList源码可以看出,当需要获得一个子List时,底层并不是真正的返回一个子List,还是原来的List,只不过
* 在操作的时候,索引全部限定在用户所需要的子List部分而已
*/
SubList(AbstractList list, int fromIndex, int toIndex) {
if (fromIndex < 0)
throw new IndexOutOfBoundsException("fromIndex = " + fromIndex);
if (toIndex > list.size())
throw new IndexOutOfBoundsException("toIndex = " + toIndex);
if (fromIndex > toIndex)
throw new IllegalArgumentException("fromIndex(" + fromIndex +
") > toIndex(" + toIndex + ")");
l = list; //原封不动的将原来的list赋给l
offset = fromIndex; //偏移量,用在操作新的子List中
size = toIndex - fromIndex; //子List的大小,所以子List中不包括toIndex处的值,即子List中包括左边不包括右边
this.modCount = l.modCount;
}
//注意下面所有的操作都在索引上加上偏移量offset,相当于在原来List的副本上操作子List
public E set(int index, E element) {
rangeCheck(index);
checkForComodification();
return l.set(index+offset, element);
}
public E get(int index) {
rangeCheck(index);
checkForComodification();
return l.get(index+offset);
}
public int size() {
checkForComodification();
return size;
}
public void add(int index, E element) {
rangeCheckForAdd(index);
checkForComodification();
l.add(index+offset, element);
this.modCount = l.modCount;
size++;
}
public E remove(int index) {
rangeCheck(index);
checkForComodification();
E result = l.remove(index+offset);
this.modCount = l.modCount;
size--;
return result;
}
protected void removeRange(int fromIndex, int toIndex) {
checkForComodification();
l.removeRange(fromIndex+offset, toIndex+offset);
this.modCount = l.modCount;
size -= (toIndex-fromIndex);
}
public boolean addAll(Collection extends E> c) {
return addAll(size, c);
}
public boolean addAll(int index, Collection extends E> c) {
rangeCheckForAdd(index);
int cSize = c.size();
if (cSize==0)
return false;
checkForComodification();
l.addAll(offset+index, c);
this.modCount = l.modCount;
size += cSize;
return true;
}
public Iterator iterator() {
return listIterator();
}
public ListIterator listIterator(final int index) {
checkForComodification();
rangeCheckForAdd(index);
return new ListIterator() {
private final ListIterator i = l.listIterator(index+offset); //相当子List的索引0
public boolean hasNext() {
return nextIndex() < size;
}
public E next() {
if (hasNext())
return i.next();
else
throw new NoSuchElementException();
}
public boolean hasPrevious() {
return previousIndex() >= 0;
}
public E previous() {
if (hasPrevious())
return i.previous();
else
throw new NoSuchElementException();
}
public int nextIndex() {
return i.nextIndex() - offset;
}
public int previousIndex() {
return i.previousIndex() - offset;
}
public void remove() {
i.remove();
SubList.this.modCount = l.modCount;
size--;
}
public void set(E e) {
i.set(e);
}
public void add(E e) {
i.add(e);
SubList.this.modCount = l.modCount;
size++;
}
};
}
public List subList(int fromIndex, int toIndex) {
return new SubList<>(this, fromIndex, toIndex);
}
private void rangeCheck(int index) {
if (index < 0 || index >= size)
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}
private void rangeCheckForAdd(int index) {
if (index < 0 || index > size)
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}
private String outOfBoundsMsg(int index) {
return "Index: "+index+", Size: "+size;
}
private void checkForComodification() {
if (this.modCount != l.modCount)
throw new ConcurrentModificationException();
}
}
class RandomAccessSubList extends SubList implements RandomAccess {
RandomAccessSubList(AbstractList list, int fromIndex, int toIndex) {
super(list, fromIndex, toIndex);
}
public List subList(int fromIndex, int toIndex) {
return new RandomAccessSubList<>(this, fromIndex, toIndex);
}
}
AbstractSet的定义如下:
public abstract class AbstractSet extends AbstractCollection implements Set {}
AbstractSet是一个继承与AbstractCollection,并且实现了Set接口的抽象类。由于Set接口和Collection接口中的API完全一样,所以Set也就没有自己单独的API。和AbstractCollection一样,它实现了List中除iterator()和size()外的方法。所以源码和AbstractCollection的一样。
AbstractSet的主要作用:它实现了Set接口总的大部分函数,从而方便其他类实现Set接口。
Iterator的定义如下:
public interface Iterator {}
Iterator是一个接口,它是集合的迭代器。集合可以通过Iterator去遍历其中的元素。Iterator提供的API接口包括:是否存在下一个元素,获取下一个元素和删除当前元素。
注意:Iterator遍历Collection时,是fail-fast机制的。即,当某一个线程A通过iterator去遍历某集合的过程中,若该集合的内容被其他线程所改变了,那么线程A访问集合时,就会抛出CurrentModificationException异常,产生fail-fast事件。下面是Iterator的几个API。
// Iterator的API
abstract boolean hasNext()
abstract E next()
abstract void remove()
ListIterator的定义如下:
public interface ListIterator extends Iterator {}
ListIterator是一个继承Iterator的接口,它是队列迭代器。专门用于遍历List,能提供向前和向后遍历。相比于Iterator,它新增了添加、是否存在上一个元素、获取上一个元素等API接口:
// 继承于Iterator的接口
abstract boolean hasNext()
abstract E next()
abstract void remove()
// 新增API接口
abstract void add(E object)
abstract boolean hasPrevious()
abstract int nextIndex()
abstract E previous()
abstract int previousIndex()
abstract void set(E object)
Collection的架构就讨论到这吧,如果有问题欢迎留言指正~
文末福利:“程序员私房菜”,一个有温度的公众号~
_____________________________________________________________________________________________________________________________________________________
-----乐于分享,共同进步!
-----更多文章请看:http://blog.csdn.net/eson_15