python2 python3 TypeError: unsupported operand type(s) for /: 'dict_values' and 'int'

plot绘制各种曲线的程序,在python27下运行正常,到python35下 提示出现这个错误:

TypeError: unsupported operand type(s) for /: 'dict_values' and 'int'

 

  • In python3, dict.values returns a dict_values object, which is not a list or tuple. Try coercing that into a list. total_minutes = list(total_minutes_by_account.values()). – Abdou Apr 27 '17 at 16:40

  • It's a good idea to check the results of a np.array(...) statement. During testing look at total_minutes, or at least check its shape and dtype. Don't just assume, check. In this case the dtype is probably object, not floats or ints. – hpaulj Apr 27 '17 at 17:29

  • Find below a summary of his answer. It helped me a lot.

    In [1618]: dd = {'a':[1,2,3], 'b':[4,5,6]}
    In [1619]: dd
    Out[1619]: {'a': [1, 2, 3], 'b': [4, 5, 6]}
    In [1620]: dd.values()
    Out[1620]: dict_values([[1, 2, 3], [4, 5, 6]])
    In [1621]: np.mean(dd.values())
    ... 
    TypeError: unsupported operand type(s) for /: 'dict_values' and 'int'
    

    Solution: convert the dict_values to list:

    In [1623]: list(dd.values())
    Out[1623]: [[1, 2, 3], [4, 5, 6]]
    In [1624]: np.mean(list(dd.values()))
    Out[1624]: 3.5
    

    In Py3, range and dict.keys() require the same extra touch.

    ========

    np.mean first tries to convert the input to an array, but with values() that isn't what we want. It makes a single item object array containing this whole object.

  • In [1626]: np.array(dd.values())
    Out[1626]: array(dict_values([[1, 2, 3], [4, 5, 6]]), dtype=object)
    In [1627]: _.shape
    Out[1627]: ()
    In [1628]: np.array(list(dd.values()))
    Out[1628]: 
    array([[1, 2, 3],
           [4, 5, 6]])

    25行修改后 28行也要加list函数 ,否则提示如下错误(下面代码黑色两行,原来python2中无list函数)

  • numpy.core._internal.AxisError: axis -1 is out of bounds for array of dimension 0

  • import numpy as np

    import matplotlib
    matplotlib.use('Agg')
    import matplotlib.pyplot as plt

    import collections
    import time
    import pickle as pickle

    _since_beginning = collections.defaultdict(lambda: {})
    _since_last_flush = collections.defaultdict(lambda: {})

    _iter = [0]
    def tick():
        _iter[0] += 1

    def plot(name, value):
        _since_last_flush[name][_iter[0]] = value

    def flush():
        prints = []

        for name, vals in _since_last_flush.items():
            prints.append("{}\t{}".format(name, np.mean(list(vals.values()))))
            _since_beginning[name].update(vals)
            
            x_vals = np.sort(list(_since_beginning[name].keys()))
            y_vals = [_since_beginning[name][x] for x in x_vals]

            plt.clf()
            plt.plot(x_vals, y_vals)
            plt.xlabel('iteration')
            plt.ylabel(name)
            plt.savefig(name.replace(' ', '_')+'.jpg')

        print ("iter {}\t{}".format(_iter[0], "\t".join(prints)))
        _since_last_flush.clear()

        with open('log.pkl', 'wb') as f:
            pickle.dump(dict(_since_beginning), f, pickle.HIGHEST_PROTOCOL)

你可能感兴趣的:(GAN,tensorflow,基本)