flink源码阅读---DataStream API编程指南

在Flink中的DataStream程序是实现数据流转换的常规程序(例如,过滤,更新状态,定义窗口,聚合)。数据流最初是从各种来源创建的(例如,消息队列、套接字流、文件)。结果通过接收器返回,例如,接收器可以将数据写入文件或标准输出(例如命令行终端)。Flink程序可以在各种上下文中运行,可以独立运行,也可以嵌入到其他程序中。可以在本地JVM中执行,也可以在许多机器的集群上执行。

Flink程序的解剖:

  1. Obtain an execution environment,
  2. Load/create the initial data,  source
  3. Specify transformations on this data, operator
  4. Specify where to put the results of your computations, sink
  5. Trigger the program execution  execute()

source:

Sources are where your program reads its input from. You can attach a source to your program by using StreamExecutionEnvironment.addSource(sourceFunction)

Sinks:

Data sinks consume DataStreams and forward them to files, sockets, external systems, or print them

Iterations:  迭代

https://ci.apache.org/projects/flink/flink-docs-release-1.10/zh/dev/datastream_api.html

Execution Parameters:执行参数

https://ci.apache.org/projects/flink/flink-docs-release-1.10/dev/execution_configuration.html

Fault Tolerance:容错

https://ci.apache.org/projects/flink/flink-docs-release-1.10/dev/stream/state/checkpointing.html

StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

// start a checkpoint every 1000 ms
env.enableCheckpointing(1000);

// advanced options:

// set mode to exactly-once (this is the default)
env.getCheckpointConfig().setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE);

// make sure 500 ms of progress happen between checkpoints
env.getCheckpointConfig().setMinPauseBetweenCheckpoints(500);

// checkpoints have to complete within one minute, or are discarded
env.getCheckpointConfig().setCheckpointTimeout(60000);

// allow only one checkpoint to be in progress at the same time
env.getCheckpointConfig().setMaxConcurrentCheckpoints(1);

// enable externalized checkpoints which are retained after job cancellation
env.getCheckpointConfig().enableExternalizedCheckpoints(ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION);

// allow job recovery fallback to checkpoint when there is a more recent savepoint
env.getCheckpointConfig().setPreferCheckpointForRecovery(true);

Controlling Latency:控制延迟

要控制吞吐量和延迟,可以在执行环境(或单个操作符)上使用env.setBufferTimeout(timeoutMillis)设置缓冲区满溢的最大等待时间。在此之后,即使缓冲区没有满,也会自动发送缓冲区。此超时的默认值是100毫秒。

LocalStreamEnvironment env = StreamExecutionEnvironment.createLocalEnvironment();
env.setBufferTimeout(timeoutMillis);

env.generateSequence(1,10).map(new MyMapper()).setBufferTimeout(timeoutMillis);

operator:算子

DataStream Transformations:

https://ci.apache.org/projects/flink/flink-docs-release-1.10/zh/dev/stream/operators/

窗口

https://ci.apache.org/projects/flink/flink-docs-release-1.10/zh/dev/stream/operators/windows.html

Joining

https://ci.apache.org/projects/flink/flink-docs-release-1.10/zh/dev/stream/operators/joining.html

Process Function(Low-level Operations)

https://ci.apache.org/projects/flink/flink-docs-release-1.10/zh/dev/stream/operators/process_function.html

用于外部数据访问的异步 I/O:

https://ci.apache.org/projects/flink/flink-docs-release-1.10/zh/dev/stream/operators/asyncio.html

connector 流式连接器:

  • Apache Kafka (source/sink)
  • Apache Cassandra (sink)
  • Amazon Kinesis Streams (source/sink)
  • Elasticsearch (sink)
  • Hadoop FileSystem (sink)
  • RabbitMQ (source/sink)
  • Apache NiFi (source/sink)
  • Twitter Streaming API (source)
  • Google PubSub (source/sink)

    Flink 还有些一些额外的连接器通过 Apache Bahir 发布, 包括:

  • Apache ActiveMQ (source/sink)
  • Apache Flume (sink)
  • Redis (sink)
  • Akka (sink)
  • Netty (source)

Side Outputs:

除了由DataStream操作生成的主流之外,您还可以生成任意数量的附加输出结果流

DataStream input = ...;

final OutputTag outputTag = new OutputTag("side-output"){};

SingleOutputStreamOperator mainDataStream = input
  .process(new ProcessFunction() {

      @Override
      public void processElement(
          Integer value,
          Context ctx,
          Collector out) throws Exception {
        // emit data to regular output
        out.collect(value);

        // emit data to side output
        ctx.output(outputTag, "sideout-" + String.valueOf(value));
      }
    });

 

 

你可能感兴趣的:(flink源码阅读---DataStream API编程指南)