- 事件驱动架构下的Java应用——构建响应迅速、解耦合的高效系统
墨夶
Java学习资料2java架构开发语言
在当今快速变化的技术环境中,软件系统的灵活性和响应速度成为了决定其成功与否的关键因素之一。传统的同步处理方式往往难以满足现代应用程序对于高性能和低延迟的要求。而事件驱动架构(Event-DrivenArchitecture,EDA)作为一种新兴的设计模式,通过引入异步机制来实现组件间的松散耦合,从而极大地提高了系统的可扩展性和维护性。本文将深入探讨如何基于Java语言构建一个高效的事件驱动架构,并
- OpenSPG docker 安装教程
@comefly
NLPdockeropenspg知识图谱llm
文章目录前言自述一、OpenSPG1.介绍二、安装步骤1.安装服务端2.客户端部署前言自述我最近是想结合chatglm3-6b和知识图谱做一个垂直领域的技术规范的问答系统,过程中也遇到了很多困难,在模型微调上,在数据集收集整理上,在知识图谱的信息抽取上等等,咬咬牙,多学习就可以解决,本文主要写一下利用openspg做技术规范的信息抽取的部署安装过程。一、OpenSPG1.介绍OpenSPG是蚂蚁集
- 如何新建一个React Native的项目
LJ小番茄
随便写点reactnativereact.jsjavascript
要新建一个ReactNative项目,你可以使用ReactNative官方推荐的工具ReactNativeCLI或者Expo。两者的区别在于:ReactNativeCLI提供更多对原生代码的访问权限,适合构建复杂的应用;而Expo是一个开发工具链,简化了许多设置,非常适合快速启动项目,尤其是小型应用或原生功能需求不高的项目。下面我将分别介绍如何使用ReactNativeCLI和ExpoCLI来创建
- MVC设计模式简介
大海知天空
MVC设计模式(Model-View-Controller)是软件工程中常见的一种软件架构模式,该模式把软件系统(项目)分为三个基本部分:模型(Model)、视图(View)和控制器(Controller)。使用MVC模式有很多优势,例如:简化后期对项目的修改、扩展等维护操作;使项目的某一部分变得可以重复利用;使项目的结构更加直观。具体来讲,MVC模式可以将项目划分为模型(M)、视图(V)和控制器
- asp.net mysql 性能问题_ASP.NET性能优化小结
syhakh
asp.netmysql性能问题
一、返回多个数据集检查你的访问数据库的代码,看是否存在着要返回多次的请求。每次往返降低了你的应用程序的每秒能够响应请求的次数。通过在单个数据库请求中返回多个结果集,可以减少与数据库通信的时间,使你的系统具有扩展性,也可以减少数据库服务器响应请求的工作量。如果用动态的SQL语句来返回多个数据集,那用存储过程来替代动态的SQL语句会更好些。是否把业务逻辑写到存储过程中,这个有点争议。但是我认为,把业务
- ollama教程——使用LangChain调用Ollama接口实现ReAct
walkskyer
ollama入门教程langchainreact.js前端
ollama入门系列教程简介与目录相关文章:Ollama教程——入门:开启本地大型语言模型开发之旅Ollama教程——模型:如何将模型高效导入到Ollama框架Ollama教程——兼容OpenAIAPI:高效利用兼容OpenAI的API进行AI项目开发Ollama教程——使用LangChain:Ollama与LangChain的强强联合Ollama教程——生成内容API:利用Ollama的原生AP
- ChatGPT大模型极简应用开发-目录
uncle_ll
#GPTchatgpt人工智能LLM大模型GPT
引言要理解ChatGPT,了解其背后的Transformer架构和GPT技术一路的演进则变得非常必要。ChatGPT背后的LLM技术使普通人能够通过自然语言完成过去只能由程序员通过编程语言实现的任务,这是一场巨大的变革。然而,人类通常容易高估技术的短期影响而低估长期影响。进一步学习关于LLM技术原理的论文、视频、图书等。在阅读这本书或者后续学习过程中,你有任何疑问都可以随时请教ChatGPT等工具
- Python数据分析高频面试题及答案
闲人编程
程序员面试python数据分析面试题核心
目录1.基础知识2.数据处理3.数据可视化4.机器学习模型5.进阶问题6.数据清洗与预处理7.数据转换与操作8.时间序列分析9.高级数据分析技术10.数据降维与特征选择11.模型评估与优化12.数据操作与转换13.数据筛选与分析14.数据可视化与报告15.数据统计与分析16.高级数据处理以下是一些Python数据分析的高频核心面试题及其答案,涵盖了基础知识、数据1.基础知识问1:Python中列表
- 数据结构---C++版
海狸_hlz
数据结构数据结构
第1章数据结构的基本概念1.1数据结构在程序设计中的作用1)程序设计的实质是什么?数据表示:将数据存储在计算机(内存)中数据处理:处理数据,设计方案(算法)1.2计算机求解问题:1)问题→抽象出问题的模型→求模型的解问题——数值问题、非数值问题2)数值问题→数学方程非数值问题→数据结构3)本书讨论非数值问题的数据组织和处理,主要内容如下:(1)数据的逻辑结构:线性表、树、图等数据结构,其核心是如何
- 数据分析思维
幽兰的天空
combobox数据仓库大数据
了解数据分析的本质是什么在数据中寻找解决问题的方法。使用大量的数据、统计分析、定量、定性分析和预测模型及基于事实的管理来推动决策过程和实现价值增生。数据分析思维1.一个思维模型:目标导向分析法2.做好分析准备:探索性数据分析数据分析的四个层级1.描述性分析2.诊断性分析3.预测性分析4.决策性分析
- leetCode热门100题——1.两数之和
Bin二叉
算法数据结构leetcode
题目描述给定一个整数数组nums和一个整数目标值target,请你在该数组中找出和为目标值target的那两个整数,并返回它们的数组下标。你可以假设每种输入只会对应一个答案,并且你不能使用两次相同的元素(但原数组中可能有两个相同的元素,这种情况可以使用)。你可以按任意顺序返回答案。示例1:输入:nums=[2,7,11,15],target=9输出:[0,1]解释:因为nums[0]+nums[1
- 随机应变:网站的可扩展性架构
迈克雷(MichaelRay)
架构之美
国内某大型互联网企业经常因为对同行的产品进行微创新,然后推出自己的产品而遭人诟病,不讨论这种做法是否合适,我们分析这些产品,发现大多数都比原创产品有更好的用户体验。这些产品常常后来居上,更速度地推出新功能,吸引用户注意,进而占据市场。微信从发布到拥有1亿用户,仅仅用了一年的时间。而据说摇一摇这个功能是两个实习生用一个星期就开发完成上线的。使用TOP(TaobaoOpenAPI),一个技术熟练的淘宝
- Python中用ollama库实现连续对话
longnershot
python开发语言AI编程
找来找去没找到一个简单示例,用4o和问心来回调整简单生成了一个,抛砖引玉了。importollamadefchat_with_ollama():#初始化一个列表来存储对话历史,每个元素是一个包含用户输入和模型回复的元组history=[]whileTrue:#获取用户输入,并转换为小写,方便后续判断退出条件user_input=input("\nUser:")#判断用户是否想要退出对话ifuser
- 设计模式之结构型模式
power-辰南
java专栏设计模式
一、结构型模式概述结构型模式主要用于处理类与对象的组合。它描述了如何将类或对象结合在一起形成更大的结构,就像搭积木一样,通过不同的组合方式构建出复杂而强大的软件架构。其主要目的是简化系统的设计,提高系统的灵活性、可维护性和可扩展性。常见的结构型模式有代理模式、适配器模式、桥接模式、装饰器模式、外观模式、享元模式和组合模式。二、代理模式(一)定义与概念代理模式是为其他对象提供一种代理以控制对这个对象
- Python机器学习之XGBoost从入门到实战(基本理论说明)
雪域枫蓝
PythonAtificialIntelligence机器学习python分布式
Xgboost从基础到实战XGBoost:eXtremeGradientBoosting*应用机器学习领域的一个强有力的工具*GradientBootingMachines(GBM)的优化表现,快速有效—深盟分布式机器学习开源平台(DistributedmachinelearningCommunity,DMLC)的分支—DMLC也开源流行的深度学习库mxnet*GBM:Machine:机器学习模型
- 【Python篇】深入机器学习核心:XGBoost 从入门到实战
半截诗
Pythonpython机器学习深度学习分类回归数据分析XGBoost
文章目录XGBoost完整学习指南:从零开始掌握梯度提升1.前言2.什么是XGBoost?2.1梯度提升简介3.安装XGBoost4.数据准备4.1加载数据4.2数据集划分5.XGBoost基础操作5.1转换为DMatrix格式5.2设置参数5.3模型训练5.4预测6.模型评估7.超参数调优7.1常用超参数7.2网格搜索8.XGBoost特征重要性分析9.高级功能扩展9.1模型解释与可解释性9.2
- python调用ollama库详解
2201_75335496
python经验分享神经网络人工智能自然语言处理语言模型
0准备1)准备Ollama软件(注意:两个不是同一个东西)详见上次的文章Ollama通过gguf文件加载AI模型(补充:关于Ollama加载AI模型的补充)2)准备ollama库如果您还未安装ollama库,请使用pip安装:pipinstallollama#1ollama库的基本使用importollama#普通输出(请先按照准备工作中的要求安装模型)back=ollama.chat(model
- 【YOLOv8杂草作物目标检测】
stsdddd
YOLO目标检测目标检测YOLO目标检测人工智能
YOLOv8杂草目标检测算法介绍模型和数据集下载算法介绍YOLOv8在禾本科杂草目标检测方面有显著的应用和效果。以下是一些关键信息的总结:农作物幼苗与杂草检测系统:基于YOLOv8深度学习框架,通过2822张图片训练了一个目标检测模型,用于检测田间的农作物幼苗与杂草对象。该系统支持图片、视频以及摄像头进行目标检测,并能保存检测结果。系统界面可实时显示目标位置、目标总数、置信度、用时等信息。YOLO
- 【大模型】Spring AI Alibaba 对接百炼平台大模型使用详解
小码农叔叔
AI大模型实战与应用微服务治理与实战springaiSpringAI详解百炼大模型
目录一、前言二、SpringAI概述2.1springai是什么2.2SpringAI核心能力2.3SpringAI应用场景三、SpringAIAlibaba介绍3.1SpringAIAlibaba是什么3.2SpringAIAlibaba核心特点3.3SpringAIAlibaba应用场景四、SpringBoot对接SpringAIAlibaba过程4.1前置准备4.1.1获取apikey4.1
- 思维图GOT:用大语言模型解决复杂问题
硅谷秋水
大模型人工智能机器学习语言模型人工智能自然语言处理
23年8月份来自瑞士和波兰的大学以及一个数据公司Cledar的大语言模型论文“GraphofThoughts:SolvingElaborateProblemswithLargeLanguageModels“。思维图(GoT)是一个框架,提高大型语言模型(LLM)中的提示功能,超出思维链或思维树(ToT)等范式所提供的能力。GoT的关键思想和主要优势是能够将LLM生成的信息建模为任意图,其中信息单位
- EL表达式与JSTL标签库详解
秦老师Q
JavaWeb基础java
前言本章主要学习EL表达式与JSTL标签库,用于简化JSP数据操作。收录JavaWeb基础系列,该系列主要学习JavaWeb开发原生框架、Servlet、JSP、request请求对象、response响应对象、Session会话对象、Filter过滤器、EL表达式、JSTL标签库、三层开发模型等知识点,欢迎童鞋们互相交流。觉得不错可以三连订阅喔。目标一、EL表达式1.概念2.语法3.示例4.EL
- Nginx 集群测试
小馋喵知识杂货铺
性能中间件
在Nginx集群的部署和维护过程中,为了确保系统的高可用性、性能和扩展性,必须进行全面的测试。以下是Nginx集群需要进行的几类主要测试:1.集群有效性测试集群有效性测试的主要目的是验证Nginx集群的基本功能是否正常工作,确保流量分发和负载均衡按预期运行。测试内容:负载均衡验证:确保Nginx按照配置的负载均衡算法(如轮询、加权轮询、IP哈希等)正确地分发请求。测试方法:使用压力测试工具模拟请求
- python概述_理解Python数据类:Dataclass 的特征概述 (上)
weixin_39875842
python概述
原标题UnderstandingPythonDataclasses—Part1,作者为ShikharChauhan。这是一个包含两部分的博文:这一篇是Dataclass的特征概述下一篇是Dataclassfields的概述引言Dataclasses是一些适合于存储数据对象(dataobject)的Python类。你可能会问,什么是数据对象?下面是一个并不详尽的用于定义数据对象的特征列表:他们存储并
- 集成AI离线免费,全平台毫秒级快速处理!
纪元A梦
资源分享人工智能科技电脑软件抠图
随着PS技术的发展,大家对图像的要求和处理更加的多样化,其中,抠图作为一种常见的图像处理操作,并不是每个小伙伴都完全掌握PS技能,对于那些复杂的抠图操作往往会显得捉襟见肘,近两年随着AI技术的进步,各类软件都和AI集合,希望通过AI快速、高效的实现某些操作;分享一款免费、离线并且内嵌AI模型的抠图工具:鲜艺AI抠图v3.1;获取方式:https://pan.baidu.com/s/1gej6HL4
- 1.Spring AI 从入门到实践
laopeng301
SpringAIspring人工智能java
SpringAI从入门到实践1.什么是SpringAI2.使用SpringBoot&SpringAI快速构建AI应用程序3.ChatClient&ChatModel简化与AI模型的交互4.SpringAIPrompt:与大模型进行有效沟通5.结构化输出大模型响应6.实战:AI聊天机器人Ben技术站关注Java技术,LLM,计算机科学等内容。关注会持续更新推送详细教程内容和源码。
- 【论文翻译】GOT-OCR论文翻译——General OCR Theory: Towards OCR-2.0 via a Unified End-to-end Model
机器白学
论文翻译ocr论文阅读论文翻译
论文原文链接:https://arxiv.org/abs/2409.01704特别声明,本文不做任何商业用途,仅作为个人学习相关论文的翻译记录。本文对原文内容直译,一切以论文原文内容为准,对原文作者表示最大的敬意。如有任何侵权请联系我下架相关文章。目录通用OCR理论:通过统一的端到端模型迈向OCR-2.00摘要1引言2相关工作2.1传统OCR2.2基于LVLM的OCR3通用OCR理论3.1框架3.
- Go 语言的slice是如何扩容的?
go
Go语言中的slice是一种灵活、动态的视图,是对底层数组的抽象。当对slice进行追加元素等操作导致其长度超过容量时,就会发生扩容。一、扩容的基本原理当slice需要扩容时,Go语言会根据当前的容量来确定新的容量。一般来说,新的容量通常是原容量的2倍。例如,如果一个slice的容量是10,那么在扩容后,新的容量会变成20。这种扩容策略使得slice的容量能够快速增长,以满足不断添加元素的需求。但
- 文心一言 vs gpt-4 全面横向比较
周盛欢
文心一言
文心一言是中国百度公司研发的大规模语言模型,它有超多的参数,就像一个超级大脑,特别擅长理解并生成中文内容。在聊天啊、写文章啊、答题这些任务上表现不错,对中国文化和国情有更深的理解和适应能力。GPT-3.5是OpenAI公司的上一代大模型,比GPT-3更智能一些。而GPT-4作为其升级版,大家预计它会有更大的模型参数量,更强的学习和推理能力,可能会在各种语言任务上实现更大突破。所以,如果拿文心一言跟
- LLMs,即大型语言模型
maopig
AI语言模型人工智能自然语言处理
LLMs,即大型语言模型,是一类基于深度学习的人工智能模型,它们通过海量的数据和大量的计算资源进行训练,可以理解和生成自然语言。LLMs的核心架构是Transformer,其关键在于自注意力机制,使得模型能够同时对输入的所有位置进行“关注”,从而更好地捕捉长距离的语义依赖关系。LLMs在众多领域都有广泛的应用,如自然语言理解(NLU),语言生成,以及语音识别和合成等。例如,它们能够理解人类的语言
- 随机森林分类算法原理与实验分析
ningaiiii
机器学习与深度学习随机森林分类算法
随机森林分类算法原理与实验分析1.引言随机森林(RandomForest)是一种集成学习方法,它通过构建多个决策树并结合它们的预测结果来进行分类。你可以把它想象成一个“团队决策”的过程:团队中的每个成员(决策树)都独立发表意见,最后通过投票决定最终结果。这种方法不仅提高了模型的准确性,还增强了模型的稳定性和鲁棒性。随机森林的主要特点是通过随机选择样本和特征来构建多个决策树,从而避免单棵决策树可能产
- 辗转相处求最大公约数
沐刃青蛟
C++漏洞
无言面对”江东父老“了,接触编程一年了,今天发现还不会辗转相除法求最大公约数。惭愧惭愧!
为此,总结一下以方便日后忘了好查找。
1.输入要比较的两个数a,b
忽略:2.比较大小(因为后面要的是大的数对小的数做%操作)
3.辗转相除(用循环不停的取余,如a%b,直至b=0)
4.最后的a为两数的最大公约数
&
- F5负载均衡会话保持技术及原理技术白皮书
bijian1013
F5负载均衡
一.什么是会话保持? 在大多数电子商务的应用系统或者需要进行用户身份认证的在线系统中,一个客户与服务器经常经过好几次的交互过程才能完成一笔交易或者是一个请求的完成。由于这几次交互过程是密切相关的,服务器在进行这些交互过程的某一个交互步骤时,往往需要了解上一次交互过程的处理结果,或者上几步的交互过程结果,服务器进行下
- Object.equals方法:重载还是覆盖
Cwind
javagenericsoverrideoverload
本文译自StackOverflow上对此问题的讨论。
原问题链接
在阅读Joshua Bloch的《Effective Java(第二版)》第8条“覆盖equals时请遵守通用约定”时对如下论述有疑问:
“不要将equals声明中的Object对象替换为其他的类型。程序员编写出下面这样的equals方法并不鲜见,这会使程序员花上数个小时都搞不清它为什么不能正常工作:”
pu
- 初始线程
15700786134
暑假学习的第一课是讲线程,任务是是界面上的一条线运动起来。
既然是在界面上,那必定得先有一个界面,所以第一步就是,自己的类继承JAVA中的JFrame,在新建的类中写一个界面,代码如下:
public class ShapeFr
- Linux的tcpdump
被触发
tcpdump
用简单的话来定义tcpdump,就是:dump the traffic on a network,根据使用者的定义对网络上的数据包进行截获的包分析工具。 tcpdump可以将网络中传送的数据包的“头”完全截获下来提供分析。它支 持针对网络层、协议、主机、网络或端口的过滤,并提供and、or、not等逻辑语句来帮助你去掉无用的信息。
实用命令实例
默认启动
tcpdump
普通情况下,直
- 安卓程序listview优化后还是卡顿
肆无忌惮_
ListView
最近用eclipse开发一个安卓app,listview使用baseadapter,里面有一个ImageView和两个TextView。使用了Holder内部类进行优化了还是很卡顿。后来发现是图片资源的问题。把一张分辨率高的图片放在了drawable-mdpi文件夹下,当我在每个item中显示,他都要进行缩放,导致很卡顿。解决办法是把这个高分辨率图片放到drawable-xxhdpi下。
&nb
- 扩展easyUI tab控件,添加加载遮罩效果
知了ing
jquery
(function () {
$.extend($.fn.tabs.methods, {
//显示遮罩
loading: function (jq, msg) {
return jq.each(function () {
var panel = $(this).tabs(&
- gradle上传jar到nexus
矮蛋蛋
gradle
原文地址:
https://docs.gradle.org/current/userguide/maven_plugin.html
configurations {
deployerJars
}
dependencies {
deployerJars "org.apache.maven.wagon
- 千万条数据外网导入数据库的解决方案。
alleni123
sqlmysql
从某网上爬了数千万的数据,存在文本中。
然后要导入mysql数据库。
悲剧的是数据库和我存数据的服务器不在一个内网里面。。
ping了一下, 19ms的延迟。
于是下面的代码是没用的。
ps = con.prepareStatement(sql);
ps.setString(1, info.getYear())............;
ps.exec
- JAVA IO InputStreamReader和OutputStreamReader
百合不是茶
JAVA.io操作 字符流
这是第三篇关于java.io的文章了,从开始对io的不了解-->熟悉--->模糊,是这几天来对文件操作中最大的感受,本来自己认为的熟悉了的,刚刚在回想起前面学的好像又不是很清晰了,模糊对我现在或许是最好的鼓励 我会更加的去学 加油!:
JAVA的API提供了另外一种数据保存途径,使用字符流来保存的,字符流只能保存字符形式的流
字节流和字符的难点:a,怎么将读到的数据
- MO、MT解读
bijian1013
GSM
MO= Mobile originate,上行,即用户上发给SP的信息。MT= Mobile Terminate,下行,即SP端下发给用户的信息;
上行:mo提交短信到短信中心下行:mt短信中心向特定的用户转发短信,你的短信是这样的,你所提交的短信,投递的地址是短信中心。短信中心收到你的短信后,存储转发,转发的时候就会根据你填写的接收方号码寻找路由,下发。在彩信领域是一样的道理。下行业务:由SP
- 五个JavaScript基础问题
bijian1013
JavaScriptcallapplythisHoisting
下面是五个关于前端相关的基础问题,但却很能体现JavaScript的基本功底。
问题1:Scope作用范围
考虑下面的代码:
(function() {
var a = b = 5;
})();
console.log(b);
什么会被打印在控制台上?
回答:
上面的代码会打印 5。
&nbs
- 【Thrift二】Thrift Hello World
bit1129
Hello world
本篇,不考虑细节问题和为什么,先照葫芦画瓢写一个Thrift版本的Hello World,了解Thrift RPC服务开发的基本流程
1. 在Intellij中创建一个Maven模块,加入对Thrift的依赖,同时还要加上slf4j依赖,如果不加slf4j依赖,在后面启动Thrift Server时会报错
<dependency>
- 【Avro一】Avro入门
bit1129
入门
本文的目的主要是总结下基于Avro Schema代码生成,然后进行序列化和反序列化开发的基本流程。需要指出的是,Avro并不要求一定得根据Schema文件生成代码,这对于动态类型语言很有用。
1. 添加Maven依赖
<?xml version="1.0" encoding="UTF-8"?>
<proj
- 安装nginx+ngx_lua支持WAF防护功能
ronin47
需要的软件:LuaJIT-2.0.0.tar.gz nginx-1.4.4.tar.gz &nb
- java-5.查找最小的K个元素-使用最大堆
bylijinnan
java
import java.util.Arrays;
import java.util.Random;
public class MinKElement {
/**
* 5.最小的K个元素
* I would like to use MaxHeap.
* using QuickSort is also OK
*/
public static void
- TCP的TIME-WAIT
bylijinnan
socket
原文连接:
http://vincent.bernat.im/en/blog/2014-tcp-time-wait-state-linux.html
以下为对原文的阅读笔记
说明:
主动关闭的一方称为local end,被动关闭的一方称为remote end
本地IP、本地端口、远端IP、远端端口这一“四元组”称为quadruplet,也称为socket
1、TIME_WA
- jquery ajax 序列化表单
coder_xpf
Jquery ajax 序列化
checkbox 如果不设定值,默认选中值为on;设定值之后,选中则为设定的值
<input type="checkbox" name="favor" id="favor" checked="checked"/>
$("#favor&quo
- Apache集群乱码和最高并发控制
cuisuqiang
apachetomcat并发集群乱码
都知道如果使用Http访问,那么在Connector中增加URIEncoding即可,其实使用AJP时也一样,增加useBodyEncodingForURI和URIEncoding即可。
最大连接数也是一样的,增加maxThreads属性即可,如下,配置如下:
<Connector maxThreads="300" port="8019" prot
- websocket
dalan_123
websocket
一、低延迟的客户端-服务器 和 服务器-客户端的连接
很多时候所谓的http的请求、响应的模式,都是客户端加载一个网页,直到用户在进行下一次点击的时候,什么都不会发生。并且所有的http的通信都是客户端控制的,这时候就需要用户的互动或定期轮训的,以便从服务器端加载新的数据。
通常采用的技术比如推送和comet(使用http长连接、无需安装浏览器安装插件的两种方式:基于ajax的长
- 菜鸟分析网络执法官
dcj3sjt126com
网络
最近在论坛上看到很多贴子在讨论网络执法官的问题。菜鸟我正好知道这回事情.人道"人之患好为人师" 手里忍不住,就写点东西吧. 我也很忙.又没有MM,又没有MONEY....晕倒有点跑题.
OK,闲话少说,切如正题. 要了解网络执法官的原理. 就要先了解局域网的通信的原理.
前面我们看到了.在以太网上传输的都是具有以太网头的数据包. 
- Android相对布局属性全集
dcj3sjt126com
android
RelativeLayout布局android:layout_marginTop="25dip" //顶部距离android:gravity="left" //空间布局位置android:layout_marginLeft="15dip //距离左边距
// 相对于给定ID控件android:layout_above 将该控件的底部置于给定ID的
- Tomcat内存设置详解
eksliang
jvmtomcattomcat内存设置
Java内存溢出详解
一、常见的Java内存溢出有以下三种:
1. java.lang.OutOfMemoryError: Java heap space ----JVM Heap(堆)溢出JVM在启动的时候会自动设置JVM Heap的值,其初始空间(即-Xms)是物理内存的1/64,最大空间(-Xmx)不可超过物理内存。
可以利用JVM提
- Java6 JVM参数选项
greatwqs
javaHotSpotjvmjvm参数JVM Options
Java 6 JVM参数选项大全(中文版)
作者:Ken Wu
Email:
[email protected]
转载本文档请注明原文链接 http://kenwublog.com/docs/java6-jvm-options-chinese-edition.htm!
本文是基于最新的SUN官方文档Java SE 6 Hotspot VM Opt
- weblogic创建JMC
i5land
weblogicjms
进入 weblogic控制太
1.创建持久化存储
--Services--Persistant Stores--new--Create FileStores--name随便起--target默认--Directory写入在本机建立的文件夹的路径--ok
2.创建JMS服务器
--Services--Messaging--JMS Servers--new--name随便起--Pers
- 基于 DHT 网络的磁力链接和BT种子的搜索引擎架构
justjavac
DHT
上周开发了一个磁力链接和 BT 种子的搜索引擎 {Magnet & Torrent},本文简单介绍一下主要的系统功能和用到的技术。
系统包括几个独立的部分:
使用 Python 的 Scrapy 框架开发的网络爬虫,用来爬取磁力链接和种子;
使用 PHP CI 框架开发的简易网站;
搜索引擎目前直接使用的 MySQL,将来可以考虑使
- sql添加、删除表中的列
macroli
sql
添加没有默认值:alter table Test add BazaarType char(1)
有默认值的添加列:alter table Test add BazaarType char(1) default(0)
删除没有默认值的列:alter table Test drop COLUMN BazaarType
删除有默认值的列:先删除约束(默认值)alter table Test DRO
- PHP中二维数组的排序方法
abc123456789cba
排序二维数组PHP
<?php/*** @package BugFree* @version $Id: FunctionsMain.inc.php,v 1.32 2005/09/24 11:38:37 wwccss Exp $*** Sort an two-dimension array by some level
- hive优化之------控制hive任务中的map数和reduce数
superlxw1234
hivehive优化
一、 控制hive任务中的map数: 1. 通常情况下,作业会通过input的目录产生一个或者多个map任务。 主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改);2. 
- Spring Boot 1.2.4 发布
wiselyman
spring boot
Spring Boot 1.2.4已于6.4日发布,repo.spring.io and Maven Central可以下载(推荐使用maven或者gradle构建下载)。
这是一个维护版本,包含了一些修复small number of fixes,建议所有的用户升级。
Spring Boot 1.3的第一个里程碑版本将在几天后发布,包含许多