使用Intellij IDEA编辑java程序,打包成jar后在linux的hdfs环境下运行
1、首先在pom.xml里导入依赖:
org.apache.hadoop
hadoop-common
2.7.3
org.apache.hadoop
hadoop-hdfs
2.7.3
org.apache.hadoop
hadoop-client
2.7.3
2、程序代码:
(1)Javabean类Sold.java
package com.mystudy;
import org.apache.hadoop.io.Writable;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
public class Sold implements Writable {
//字段名 prod_id,cust_id,time,channel_id,promo_id,quantity_sold,amount_sold
//数据类型:Int,Int,Date, Int,Int ,Int ,float(10,2),
//数据: 13, 987, 1998/1/10, 3, 999,1, 1232.16
//由以上定义变量
private int prod_id;
private int cust_id;
private String time;
private int channel_id;
private int promo_id;
private int quantity_sold;
private float amount_sold;//奖金
//序列化方法:将java对象转化为可跨机器传输数据流(二进制串/字节)的一种技术
public void write(DataOutput out) throws IOException {
out.writeInt(this.prod_id);
out.writeInt(this.cust_id);
out.writeUTF(this.time);
out.writeInt(this.channel_id);
out.writeInt(this.promo_id);
out.writeInt(this.quantity_sold);
out.writeFloat(this.amount_sold);
}
//反序列化方法:将可跨机器传输数据流(二进制串)转化为java对象的一种技术
public void readFields(DataInput in) throws IOException {
this.prod_id = in.readInt();
this.cust_id = in.readInt();
this.time = in.readUTF();
this.channel_id = in.readInt();
this.promo_id = in.readInt();
this.quantity_sold = in.readInt();
this.amount_sold = in.readFloat();
}
public int getProd_id() {
return prod_id;
}
public void setProd_id(int prod_id) {
this.prod_id = prod_id;
}
public int getCust_id() {
return cust_id;
}
public void setCust_id(int cust_id) {
this.cust_id = cust_id;
}
public String getTime() {
return time;
}
public void setTime(String time) {
this.time = time;
}
public int getChannel_id() {
return channel_id;
}
public void setChannel_id(int channel_id) {
this.channel_id = channel_id;
}
public int getPromo_id() {
return promo_id;
}
public void setPromo_id(int promo_id) {
this.promo_id = promo_id;
}
public int getQuantity_sold() {
return quantity_sold;
}
public void setQuantity_sold(int quantity_sold) {
this.quantity_sold = quantity_sold;
}
public float getAmount_sold() {
return amount_sold;
}
public void setAmount_sold(float amount_sold) {
this.amount_sold = amount_sold;
}
}
(2)Mapper类SoldMapper.java
package com.mystudy;
import org.apache.commons.lang.StringUtils;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
public class SoldMapper extends Mapper {
@Override
protected void map(LongWritable k1, Text v1,
Context context)
throws IOException, InterruptedException {
//字段名 prod_id,cust_id,time,channel_id,promo_id,quantity_sold,amount_sold
//数据类型:Int,Int,Date, Int,Int ,Int ,float(10,2),
//数据: 13,987,1998-01-10,3,999,1,1232.16
String data = v1.toString();
String[] words = data.split(",");
//数据: t1=987,1998-01-10,3,999,1,1232.16
String t1 = StringUtils.substringAfter(data, ",");
//数据: t2=1998-01-10,3,999,1,1232.16
String t2 = StringUtils.substringAfter(t1, ",");
//取年份为偏移量,数据: words2[0]=1998,words2[1]=01,words2[2]=10,3,999,1,1232.16
String[] words2 = t2.split("-");
// StringUtils.substringAfter("dskeabcedeh", "e");
// /*结果是:abcedeh*/
Sold sold = new Sold();
sold.setTime(words[2]);//数组word[]
sold.setQuantity_sold(Integer.parseInt(words[5]));
sold.setAmount_sold(Float.valueOf(words[6]));
context.write(new Text(words2[0]), sold);//数组word2[],word2[0]代表年份作为k2
}
}
(3)Reduce类SoldReduce.java
package com.mystudy;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
public class SoldReduce extends Reducer {
protected void reduce(Text k3, Iterable v3, Context context) throws IOException, InterruptedException {
int total1 = 0;
float total2 = 0;
for (Sold sold : v3) {
total1 = total1 + sold.getQuantity_sold();
total2 = total2 + sold.getAmount_sold();
}
String total = "销售笔数:" + Integer.toString(total1) + "," + "销售总额:" + Float.toString(total2);
context.write(k3, new Text(total));
}
}
(4)主类SoldMain.java
package com.mystudy;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class SoldMain {
public static void main(String[] args) throws Exception {
//1. 创建一个job和任务入口(指定主类)
Job job = Job.getInstance(new Configuration());
job.setJarByClass(SoldMain.class);
//2. 指定job的mapper和输出的类型
job.setMapperClass(SoldMapper.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Sold.class);
//3. 指定job的reducer和输出的类型
job.setReducerClass(SoldReduce.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
//4. 指定job的输入和输出路径
FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
//5. 执行job
job.waitForCompletion(true);
}
}
3、在Telminal里运行mvn clean package,将程序打包好,再复制进linux里,创建合适的输入输出文件夹,和相对应Sold类的文件,例如通过以下命令运行:
hadoop jar WordCount/WordCount4-1.0-SNAPSHOT.jar /204/input/sales.csv /204/output/sales
4、运行结果: