网络剪枝

1.全连接层剪枝

全连接层剪枝的学习,参考论文《DEEP COMPRESSION: COMPRESSING DEEP NEURAL NETWORKS WITH PRUNING, TRAINED QUANTIZATION AND HUFFMAN CODING》

解决的问题:模型参数量的压缩,运算量的减少

解决思路:1.根据权重大小,删除参数。2.参数共享,量化权重矩阵,3.霍夫曼编码

结论:参数量压缩很大,30-40倍量级,运算速度,提高3-4倍。

网络剪枝_第1张图片

2.卷积核剪枝

卷积核剪枝的学习可参考这篇论文《Pruning Filters For Efficient ConvNets》

解决如下问题:前人工作只对全连接层进行了剪枝,未处理卷积层

解决思路:对卷积核计算所有项的绝对值和,剪除绝对值和小的。

结论:在CIFAR10上,VGG-16的推理成本可降低高达34%,ResNet-110最高可降低38%,同时通过重新训练网络恢复接近原始精度。具体结果对比如下:

网络剪枝_第2张图片

网络剪枝_第3张图片

 

 

你可能感兴趣的:(深度学习,卷积神经网络,深度学习,机器学习)