RSA秘钥

RSA秘钥生成
从Cryco库中拎出来的
秘钥长度需要大于200位,可以很快的生成秘钥对。

from Crypto import Random
from Crypto.Math.Numbers import Integer

COMPOSITE = 0
PROBABLY_PRIME = 1

class Rsa(object):
    def __init__(self, p,q,n,e,d,u):
        self.p=p
        self.q=q
        self.n=n
        self.e=e
        self.d=d
        self.u=u

def Gcd(_value, term):#辗转相除法求最小公约数,程序中没有用到这个函数
    r_p, r_n = abs(_value), abs(int(term))
    while r_n > 0:
        q = r_p // r_n
        r_p, r_n = r_n, r_p - q * r_n
    return r_p

def Lcm(_value, term):#求最大公约数,程序中没有用到这个函数
    term = int(term)
    if _value == 0 or term == 0:
        return 0
    return abs((_value * term) // Gcd(_value, term))

def Inverse( _value, modulus):#辗转相除法模逆运算,程序中没有用到这个函数
    modulus = int(modulus)
    if modulus == 0:
        raise ZeroDivisionError("modulus 不能为0")
    if modulus < 0:
        raise ValueError("modulus 不能为负")
    r_p, r_n = _value, modulus
    s_p, s_n = 1, 0
    while r_n > 0:
        q = r_p // r_n
        r_p, r_n = r_n, r_p - q * r_n
        s_p, s_n = s_n, s_p - q * s_n
    if r_p != 1:
        raise ValueError("无法进行模逆远算" + str(r_p))
    while s_p < 0:
        s_p += modulus
    _value = s_p
    return _value

def miller_rabin_test(candidate, iterations, randfunc=None):
    if not isinstance(candidate, Integer):
        candidate = Integer(candidate)

    if candidate in (1, 2, 3, 5):
        return PROBABLY_PRIME

    if candidate.is_even():
        return COMPOSITE

    one = Integer(1)
    minus_one = Integer(candidate - 1)

    if randfunc is None:
        randfunc = Random.new().read

    # Step 1 and 2
    m = Integer(minus_one)
    a = 0
    while m.is_even():
        m >>= 1
        a += 1

    # Skip step 3

    # Step 4
    for i in range(iterations):

        # Step 4.1-2
        base = 1
        while base in (one, minus_one):
            base = Integer.random_range(min_inclusive=2,
                                        max_inclusive=candidate - 2)
            assert (2 <= base <= candidate - 2)

        # Step 4.3-4.4
        z = pow(base, m, candidate)
        if z in (one, minus_one):
            continue

        # Step 4.5
        for j in range(1, a):
            z = pow(z, 2, candidate)
            if z == minus_one:
                break
            if z == one:
                return COMPOSITE
        else:
            return COMPOSITE

    # Step 5
    return PROBABLY_PRIME

def lucas_test(candidate):
    if not isinstance(candidate, Integer):
        candidate = Integer(candidate)

    # Step 1
    if candidate in (1, 2, 3, 5):
        return PROBABLY_PRIME
    if candidate.is_even() or candidate.is_perfect_square():
        return COMPOSITE

    # Step 2
    def alternate():
        value = 5
        while True:
            yield value
            if value > 0:
                value += 2
            else:
                value -= 2
            value = -value

    for D in alternate():
        if candidate in (D, -D):
            continue
        js = Integer.jacobi_symbol(D, candidate)
        if js == 0:
            return COMPOSITE
        if js == -1:
            break
    # Found D. P=1 and Q=(1-D)/4 (note that Q is guaranteed to be an integer)

    # Step 3
    # This is \delta(n) = n - jacobi(D/n)
    K = candidate + 1
    # Step 4
    r = K.size_in_bits() - 1
    # Step 5
    # U_1=1 and V_1=P
    U_i = Integer(1)
    V_i = Integer(1)
    U_temp = Integer(0)
    V_temp = Integer(0)
    # Step 6
    for i in range(r - 1, -1, -1):
        # Square
        # U_temp = U_i * V_i % candidate
        U_temp.set(U_i)
        U_temp *= V_i
        U_temp %= candidate
        # V_temp = (((V_i ** 2 + (U_i ** 2 * D)) * K) >> 1) % candidate
        V_temp.set(U_i)
        V_temp *= U_i
        V_temp *= D
        V_temp.multiply_accumulate(V_i, V_i)
        if V_temp.is_odd():
            V_temp += candidate
        V_temp >>= 1
        V_temp %= candidate
        # Multiply
        if K.get_bit(i):
            # U_i = (((U_temp + V_temp) * K) >> 1) % candidate
            U_i.set(U_temp)
            U_i += V_temp
            if U_i.is_odd():
                U_i += candidate
            U_i >>= 1
            U_i %= candidate
            # V_i = (((V_temp + U_temp * D) * K) >> 1) % candidate
            V_i.set(V_temp)
            V_i.multiply_accumulate(U_temp, D)
            if V_i.is_odd():
                V_i += candidate
            V_i >>= 1
            V_i %= candidate
        else:
            U_i.set(U_temp)
            V_i.set(V_temp)
    # Step 7
    if U_i == 0:
        return PROBABLY_PRIME
    return COMPOSITE

from Crypto.Util.number import sieve_base as _sieve_base_large
## The optimal number of small primes to use for the sieve
## is probably dependent on the platform and the candidate size
_sieve_base = set(_sieve_base_large[:100])

def test_probable_prime(candidate, randfunc=None):#Miller-Rabin 素数检测
    if randfunc is None:
        randfunc = Random.new().read

    if not isinstance(candidate, Integer):
        candidate = Integer(candidate)

    # First, check trial division by the smallest primes
    if int(candidate) in _sieve_base:
        return PROBABLY_PRIME
    try:
        map(candidate.fail_if_divisible_by, _sieve_base)
    except ValueError:
        return COMPOSITE

    mr_ranges = ((220, 30), (280, 20), (390, 15), (512, 10),
                 (620, 7), (740, 6), (890, 5), (1200, 4),
                 (1700, 3), (3700, 2))

    bit_size = candidate.size_in_bits()
    try:
        mr_iterations = list(filter(lambda x: bit_size < x[0],
                                    mr_ranges))[0][1]
    except IndexError:
        mr_iterations = 1

    if miller_rabin_test(candidate, mr_iterations,
                         randfunc=randfunc) == COMPOSITE:
        return COMPOSITE
    if lucas_test(candidate) == COMPOSITE:
        return COMPOSITE
    return PROBABLY_PRIME
def generate_probable_prime(**kwargs):

    exact_bits = kwargs.pop("exact_bits", None)
    randfunc = kwargs.pop("randfunc", None)
    prime_filter = kwargs.pop("prime_filter", lambda x: True)
    if kwargs:
        raise ValueError("Unknown parameters: " + kwargs.keys())

    if exact_bits is None:
        raise ValueError("Missing exact_bits parameter")
    #if exact_bits < 160:
    #    raise ValueError("Prime number is not big enough.")

    if randfunc is None:
        randfunc = Random.new().read

    result = COMPOSITE
    while result == COMPOSITE:
        ##Integer.random()create一定大小的随机自然整数
        candidate = Integer.random(exact_bits=exact_bits,randfunc=randfunc) | 1
        if not prime_filter(candidate):
            continue
        result = test_probable_prime(candidate, randfunc)
    return candidate

def generate(bits, randfunc=None, e=65537):
    """Create a new RSA key pair.
    """
    p = q = 0
    #if bits < 1024:
    #   raise ValueError("RSA modulus length must be >= 1024")
    if e % 2 == 0 or e < 3:
        raise ValueError(
            "RSA public exponent must be a positive, odd integer larger than 2.")

    if randfunc is None:
        randfunc = Random.get_random_bytes
        # 意思就是,返回一个有n个byte那么长的一个string from os import urandom
        # Random.get_random_bytes=urandom

    d = n = Integer(1)
    #A fast, arbitrary precision integer 一个快速、任意精度的整数
    e = Integer(e)
    while n.size_in_bits() != bits and d < (1 << (bits // 2)):
        size_q = bits // 2
        size_p = bits - size_q

        min_p = min_q = (Integer(1) << (2 * size_q - 1)).sqrt(modulus=None)
        if size_q != size_p:
            min_p = (Integer(1) << (2 * size_p - 1)).sqrt(modulus=None)

        def filter_p(candidate):
            return candidate > min_p and (candidate - 1).gcd(e) == 1

        p = generate_probable_prime(exact_bits=size_p,randfunc=randfunc,prime_filter=filter_p)

        min_distance = Integer(1) << (bits // 2 - 100)

        def filter_q(candidate):
            return (candidate > min_q and(candidate - 1).gcd(e) == 1 and abs(candidate - p) > min_distance)

        q = generate_probable_prime(exact_bits=size_q,randfunc=randfunc,prime_filter=filter_q)
        n = p * q
        lcm=Integer((p - 1)).lcm(q - 1)
        d = Integer(e).inverse(lcm)

    if p > q:
        p, q = q, p

    u = Integer(p).inverse(q)
    return  Rsa(n=n, e=e, d=d, p=p, q=q, u=u)

def Encode(text,key,n):
    return pow(text,key,n)

def Decode(text, key,n):
    return pow(text, key, n)

if __name__ == '__main__':
    import time
    while True:

        print("为了保证秘钥不被破解,秘钥长度需要大于200")
        length=input("请输入秘钥长度:\n")
        timestart = time.time()
        R=generate(bits=int(length))
        timeend = time.time()
        print("*q*: ",R.q)
        print("*p*: ",R.p)
        print("*n*: ",R.n)
        print("*e*: ",R.e)
        print("*d*: ",R.d)
        print("秘钥对生成的时长:",timeend-timestart)

        text=int(input("请输入转换的整数(原文):\n"))
        timestart = time.time()
        m=Encode(text,int(R.e),int(R.n))
        h=Decode(int(m),int(R.d),int(R.n))
        timeend = time.time()

        print("原文",text)
        print("密文",m)
        print("明文",h)
        print("加解密生成的时长:", timeend - timestart)
        print("*"*200+"\n")

你可能感兴趣的:(python)