dfs(棋盘问题)

参考链接 :https://blog.csdn.net/shadowcw/article/details/52326947

题目链接1:https://vjudge.net/contest/241948#problem/G

题目链接2:https://vjudge.net/problem/15202/origin

在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别。要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有可行的摆放方案C。

Input

输入含有多组测试数据。 
每组数据的第一行是两个正整数,n k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n 
当为-1 -1时表示输入结束。 
随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。 

Output

对于每一组数据,给出一行输出,输出摆放的方案数目C (数据保证C<2^31)。

Sample Input

2 1
#.
.#
4 4
...#
..#.
.#..
#...
-1 -1

Sample Output

2
1

刚开始看的时候可能会无从下手,但是仔细读题可以发现,可以从每一行出发,首先遍历该行的每一列,每一行都有两种状态,要与不要,如果要,则标记棋子放入的列,继续进行下一行要与不要,如果不要,则直接进行下一行;

此代码仿制参考链接;

#include
#include
using namespace std;

char vec[10][10];
bool lie[10];
int n;
int num;
int ans=0;
void dfs(int h,int sum){
	if(sum==num){//如果已经找到一种结果,返回; 
		ans++;	
		return ;
	}
	
	if(h>=n){	//如果行数已经超出 ,返回; 
		return ; 
	}
	
	for(int i=0;i>n>>num, n!=-1 && num!=-1){
		ans=0;
		memset(vec,0,sizeof(vec));
		memset(lie,0,sizeof(lie));
	for(int i=0;i>vec[i];
	}
	dfs(0,0);
	cout<

 

你可能感兴趣的:(dfs(棋盘问题))