Clone an undirected graph. Each node in the graph contains alabel
and a list of itsneighbors
.
Nodes are labeled uniquely.
We use#
as a separator for each node, and
,
as a separator for node label and each neighbor of the node.
As an example, consider the serialized graph{0,1,2#1,2#2,2}
.
The graph has a total of three nodes, and therefore contains three parts as separated by#
.
0
. Connect node0
to both nodes1
and2
.1
. Connect node1
to node2
.2
. Connect node2
to node2
(itself), thus forming a self-cycle.Visually, the graph looks like the following:
1 / \ / \ 0 --- 2 / \ \_/
这里使用深度优先搜索。这样可以递归实现,如果是宽度优先,就要额外使用queue容器。
关键点:
1 这里的clone需要深度拷贝,就是要使用new操作了
2 防止回路无限循环,就要使用hash表,这里使用unordered_map记录访问过的节点。因为这里的label应该是唯一的才对,所以可以直接使用label作为关键字就可以。
看起来挺难的,因为图总给人困难的感觉,其实不难,3到4星级难度吧,很多都是基本操作组合起来。我一次性通过了。
struct UndirectedGraphNode
{
int label;
vector neighbors;
UndirectedGraphNode(int x) : label(x) {};
};
class Solution
{
public:
UndirectedGraphNode *cloneGraph(UndirectedGraphNode *node)
{
unordered_map track;
return cloneGraph(node, track);
}
UndirectedGraphNode *cloneGraph(UndirectedGraphNode *node, unordered_map &track)
{
if (!node) return NULL;
if (track.count(node->label)) return track[node->label];
UndirectedGraphNode *new_node = new UndirectedGraphNode(node->label);
new_node->neighbors.resize(node->neighbors.size());
track[node->label] = new_node;
for (int i = 0; i < node->neighbors.size(); i++)
{
new_node->neighbors[i] = cloneGraph(node->neighbors[i], track);
}
return new_node;
}
};
//2014-2-18 update
UndirectedGraphNode *cloneGraph(UndirectedGraphNode *node)
{
unordered_map ump_iu;
return clone(node, ump_iu);
}
UndirectedGraphNode *clone(UndirectedGraphNode *n,
unordered_map &ump_iu)
{
if (!n) return n;
if (ump_iu.count(n->label)) return ump_iu[n->label];
UndirectedGraphNode *rs = new UndirectedGraphNode(n->label);
ump_iu[n->label] = rs;
for (int i = 0; i < n->neighbors.size(); i++)
{
(rs->neighbors).push_back(clone((n->neighbors[i]), ump_iu));
}
return rs;
}