【开源】ZXING的.NET版本源码解析

【开源】ZXING的.NET版本源码解析

[概述]

ZXing ("zebra crossing") is an open-source, multi-format 1D/2D barcode image processing library implemented in Java, with ports to other languages.

开源地址:

https://github.com/zxing/zxing

[工程结构]

以ZXing.Net.Source.0.14.0.0版本为例,此文件目录下对应两个工程:

Base和WinMD,我们主要分析Base工程,其中:

ZXing.Net.Source.0.14.0.0\Base\Source\lib目录下的工程为源码工程,zxing.vs2012为源码工程Solution文件;

ZXing.Net.Source.0.14.0.0\Base\Clients\WindowsFormsDemo目录下的工程为ZXING输出类库的应用工程,WindowsFormsDemo为应用工程Solution文件。

[应用工程分析]

WindowsFormsDemo有三个Tab,分别为Decoder/Encoder/WebCam,分别实现图片读码/二维码生成/网络摄像头采样读码(主要调用了avicap32.dll,它是Windows API应用程序接口相关模块,用于对摄像头和其它视频硬件进行AⅥ电影和视频的截取,详见工程文件WebCam.cs)。

Decoder(图片读码):

      private void btnStartDecoding_Click(object sender, EventArgs e)
      {
         var fileName = txtBarcodeImageFile.Text;
         if (!File.Exists(fileName))
         {
            MessageBox.Show(this, String.Format("File not found: {0}", fileName), "Error", MessageBoxButtons.OK,
                            MessageBoxIcon.Error);
            return;
         }

         using (var bitmap = (Bitmap)Bitmap.FromFile(fileName))
         {
            if (TryOnlyMultipleQRCodes)
               Decode(bitmap, TryMultipleBarcodes, new List { BarcodeFormat.QR_CODE });
            else
               Decode(bitmap, TryMultipleBarcodes, null);
         }
      }

      private void Decode(Bitmap image, bool tryMultipleBarcodes, IList possibleFormats)
      {
         resultPoints.Clear();
         lastResults.Clear();
         txtContent.Text = String.Empty;

         var timerStart = DateTime.Now.Ticks;
         Result[] results = null;
         barcodeReader.Options.PossibleFormats = possibleFormats;
         if (tryMultipleBarcodes)
            results = barcodeReader.DecodeMultiple(image);
         else
         {
            var result = barcodeReader.Decode(image);
            if (result != null)
            {
               results = new[] {result};
            }
         }
         var timerStop = DateTime.Now.Ticks;

         if (results == null)
         {
            txtContent.Text = "No barcode recognized";
         }
         labDuration.Text = new TimeSpan(timerStop - timerStart).Milliseconds.ToString("0 ms");

         if (results != null)
         {
            foreach (var result in results)
            {
               if (result.ResultPoints.Length > 0)
               {
                  var rect = new Rectangle((int) result.ResultPoints[0].X, (int) result.ResultPoints[0].Y, 1, 1);
                  foreach (var point in result.ResultPoints)
                  {
                     if (point.X < rect.Left)
                        rect = new Rectangle((int) point.X, rect.Y, rect.Width + rect.X - (int) point.X, rect.Height);
                     if (point.X > rect.Right)
                        rect = new Rectangle(rect.X, rect.Y, rect.Width + (int) point.X - rect.X, rect.Height);
                     if (point.Y < rect.Top)
                        rect = new Rectangle(rect.X, (int) point.Y, rect.Width, rect.Height + rect.Y - (int) point.Y);
                     if (point.Y > rect.Bottom)
                        rect = new Rectangle(rect.X, rect.Y, rect.Width, rect.Height + (int) point.Y - rect.Y);
                  }
                  using (var g = picBarcode.CreateGraphics())
                  {
                     g.DrawRectangle(Pens.Green, rect);
                  }
               }
            }
         }
      }

Encoder(二维码生成):

(待续)

WebCam(网络摄像头采样读码):

      private void btnDecodeWebCam_Click(object sender, EventArgs e)
      {
         if (wCam == null)
         {
            wCam = new WebCam {Container = picWebCam};

            wCam.OpenConnection();

            webCamTimer = new Timer();
            webCamTimer.Tick += webCamTimer_Tick;
            webCamTimer.Interval = 200; // Image derivation interval
            webCamTimer.Start();

            btnDecodeWebCam.Text = "Decoding..."; // Update UI
         }
         else
         {
            webCamTimer.Stop();
            webCamTimer = null;
            wCam.Dispose();
            wCam = null;

            btnDecodeWebCam.Text = "Decode"; // Update UI
         }
      }

      void webCamTimer_Tick(object sender, EventArgs e)
      {
         var bitmap = wCam.GetCurrentImage(); // Derive a imaghe
         if (bitmap == null)
            return;
         Console.WriteLine("Bitmap width is:{0}, height is{1}. Camera is: {2} mega-pixel.", bitmap.Width, bitmap.Height, bitmap.Width* bitmap.Height/10000);
         var reader = new BarcodeReader();
         var result = reader.Decode(bitmap); // Decode the image
         if (result != null)
         {
            txtTypeWebCam.Text = result.BarcodeFormat.ToString();
            txtContentWebCam.Text = result.Text;
         }
      }

其中WebCam对象定义的各类对摄像头的参数设置和操作详见WebCam.cs。

[源码工程分析]

1.图像解码(Qrcode为例)

Qrcode解码流程为检测定位->解码,涉及的几个主要文件为:BarcodeReader.cs(createBinarizer)->BarcodeReaderGeneric.cs(createBinarizer)->HybridBinarizer.cs(createBinarizer)、QRCodeReader.cs,Detector.cs和FinderPatternFinder.cs,Decoder.cs。

HybridBinarizer.cs(createBinarizer)类实现位图的二值化处理,核心代码段为:

      /// 
      /// Calculates the final BitMatrix once for all requests. This could be called once from the
      /// constructor instead, but there are some advantages to doing it lazily, such as making
      /// profiling easier, and not doing heavy lifting when callers don't expect it.
      /// 
      private void binarizeEntireImage()
      {
         if (matrix == null)
         {
            LuminanceSource source = LuminanceSource;
            int width = source.Width;
            int height = source.Height;
            if (width >= MINIMUM_DIMENSION && height >= MINIMUM_DIMENSION)
            {
               byte[] luminances = source.Matrix;

               int subWidth = width >> BLOCK_SIZE_POWER;
               if ((width & BLOCK_SIZE_MASK) != 0)
               {
                  subWidth++;
               }
               int subHeight = height >> BLOCK_SIZE_POWER;
               if ((height & BLOCK_SIZE_MASK) != 0)
               {
                  subHeight++;
               }
               int[][] blackPoints = calculateBlackPoints(luminances, subWidth, subHeight, width, height);

               var newMatrix = new BitMatrix(width, height);
               calculateThresholdForBlock(luminances, subWidth, subHeight, width, height, blackPoints, newMatrix);
               matrix = newMatrix;
            }
            else
            {
               // If the image is too small, fall back to the global histogram approach.
               matrix = base.BlackMatrix;
            }
         }
      }

      /// 
      /// For each 8x8 block in the image, calculate the average black point using a 5x5 grid
      /// of the blocks around it. Also handles the corner cases (fractional blocks are computed based
      /// on the last 8 pixels in the row/column which are also used in the previous block).
      /// PS(Jay):This algrithm has big issue!!! Should be enhanced!!!
      /// 
      /// The luminances.
      /// Width of the sub.
      /// Height of the sub.
      /// The width.
      /// The height.
      /// The black points.
      /// The matrix.
      private static void calculateThresholdForBlock(byte[] luminances, int subWidth, int subHeight, int width, int height, int[][] blackPoints, BitMatrix matrix)
      {
         for (int y = 0; y < subHeight; y++)
         {
            int yoffset = y << BLOCK_SIZE_POWER;
            int maxYOffset = height - BLOCK_SIZE;
            if (yoffset > maxYOffset)
            {
               yoffset = maxYOffset;
            }
            for (int x = 0; x < subWidth; x++)
            {
               int xoffset = x << BLOCK_SIZE_POWER;
               int maxXOffset = width - BLOCK_SIZE;
               if (xoffset > maxXOffset)
               {
                  xoffset = maxXOffset;
               }
               int left = cap(x, 2, subWidth - 3);
               int top = cap(y, 2, subHeight - 3);
               int sum = 0;
               for (int z = -2; z <= 2; z++)
               {
                  int[] blackRow = blackPoints[top + z];
                  sum += blackRow[left - 2];
                  sum += blackRow[left - 1];
                  sum += blackRow[left];
                  sum += blackRow[left + 1];
                  sum += blackRow[left + 2];
               }
               int average = sum / 25;
               thresholdBlock(luminances, xoffset, yoffset, average, width, matrix);
            }
         }
      }

      private static int cap(int value, int min, int max)
      {
         return value < min ? min : value > max ? max : value;
      }

      /// 
      /// Applies a single threshold to an 8x8 block of pixels.
      /// 
      /// The luminances.
      /// The xoffset.
      /// The yoffset.
      /// The threshold.
      /// The stride.
      /// The matrix.
      private static void thresholdBlock(byte[] luminances, int xoffset, int yoffset, int threshold, int stride, BitMatrix matrix)
      {
         int offset = (yoffset * stride) + xoffset;
         for (int y = 0; y < BLOCK_SIZE; y++, offset += stride)
         {
            for (int x = 0; x < BLOCK_SIZE; x++)
            {
               int pixel = luminances[offset + x] & 0xff;
               // Comparison needs to be <=, so that black == 0 pixels are black, even if the threshold is 0.
               matrix[xoffset + x, yoffset + y] = (pixel <= threshold);
            }
         }
      }

      /// 
      /// Calculates a single black point for each 8x8 block of pixels and saves it away.
      /// See the following thread for a discussion of this algorithm:
      /// http://groups.google.com/group/zxing/browse_thread/thread/d06efa2c35a7ddc0
      /// 
      /// The luminances.
      /// Width of the sub.
      /// Height of the sub.
      /// The width.
      /// The height.
      /// 
      private static int[][] calculateBlackPoints(byte[] luminances, int subWidth, int subHeight, int width, int height)
      {
         int[][] blackPoints = new int[subHeight][];
         for (int i = 0; i < subHeight; i++)
         {
            blackPoints[i] = new int[subWidth];
         }

         for (int y = 0; y < subHeight; y++)
         {
            int yoffset = y << BLOCK_SIZE_POWER;
            int maxYOffset = height - BLOCK_SIZE;
            if (yoffset > maxYOffset)
            {
               yoffset = maxYOffset;
            }
            for (int x = 0; x < subWidth; x++)
            {
               int xoffset = x << BLOCK_SIZE_POWER;
               int maxXOffset = width - BLOCK_SIZE;
               if (xoffset > maxXOffset)
               {
                  xoffset = maxXOffset;
               }
               int sum = 0;
               int min = 0xFF;
               int max = 0;
               for (int yy = 0, offset = yoffset * width + xoffset; yy < BLOCK_SIZE; yy++, offset += width)
               {
                  for (int xx = 0; xx < BLOCK_SIZE; xx++)
                  {
                     int pixel = luminances[offset + xx] & 0xFF;
                     // still looking for good contrast
                     sum += pixel;
                     if (pixel < min)
                     {
                        min = pixel;
                     }
                     if (pixel > max)
                     {
                        max = pixel;
                     }
                  }
                  // short-circuit min/max tests once dynamic range is met
                  if (max - min > MIN_DYNAMIC_RANGE)
                  {
                     // finish the rest of the rows quickly
                     for (yy++, offset += width; yy < BLOCK_SIZE; yy++, offset += width)
                     {
                        for (int xx = 0; xx < BLOCK_SIZE; xx++)
                        {
                           sum += luminances[offset + xx] & 0xFF;
                        }
                     }
                  }
               }

               // The default estimate is the average of the values in the block.
               int average = sum >> (BLOCK_SIZE_POWER * 2);
               if (max - min <= MIN_DYNAMIC_RANGE)
               {
                  // If variation within the block is low, assume this is a block with only light or only
                  // dark pixels. In that case we do not want to use the average, as it would divide this
                  // low contrast area into black and white pixels, essentially creating data out of noise.
                  //
                  // The default assumption is that the block is light/background. Since no estimate for
                  // the level of dark pixels exists locally, use half the min for the block.
                  average = min >> 1;

                  if (y > 0 && x > 0)
                  {
                     // Correct the "white background" assumption for blocks that have neighbors by comparing
                     // the pixels in this block to the previously calculated black points. This is based on
                     // the fact that dark barcode symbology is always surrounded by some amount of light
                     // background for which reasonable black point estimates were made. The bp estimated at
                     // the boundaries is used for the interior.

                     // The (min < bp) is arbitrary but works better than other heuristics that were tried.
                     int averageNeighborBlackPoint = (blackPoints[y - 1][x] + (2 * blackPoints[y][x - 1]) +
                         blackPoints[y - 1][x - 1]) >> 2;
                     if (min < averageNeighborBlackPoint)
                     {
                        average = averageNeighborBlackPoint;
                     }
                  }
               }
               blackPoints[y][x] = average;
            }
         }
         return blackPoints;
      }

这一段算法有存在改进的必要。在HybridBinarizer继承的GlobalHistogramBinarizer类中,是从图像中均匀取5行(覆盖整个图像高度),每行取中间五分之四作为样本;以灰度值为X轴,每个灰度值的像素个数为Y轴建立一个直方图,从直方图中取点数最多的一个灰度值,然后再去给其他的灰度值进行分数计算,按照点数乘以与最多点数灰度值的距离的平方来进行打分,选分数最高的一个灰度值。接下来在这两个灰度值中间选取一个区分界限(这两个点灰度值大的是偏白色的点,灰度值小的是偏黑色的点),取的原则是尽量靠近灰度值大的点(偏白色的点)、并且要点数越少越好。界限有了以后就容易了,与整幅图像的每个点进行比较,如果灰度值比界限小的就是黑,在新的矩阵中将该点置1,其余的就是白,为0。此部分具体代码见GlobalHistogramBinarizer类的BlackMatrix()重写方法。这个算法的劣势是由于是全局计算阈值点,所以应对局部阴影不太理想(However, because it picks a global black point, it cannot handle difficult shadows and gradients.)。

 

QRCodeReader类实现了接口Reader,核心段代码为:

      /// 
      /// Locates and decodes a barcode in some format within an image. This method also accepts
      /// hints, each possibly associated to some data, which may help the implementation decode.
      /// 
      /// image of barcode to decode
      /// passed as a  from 
      /// to arbitrary data. The
      /// meaning of the data depends upon the hint type. The implementation may or may not do
      /// anything with these hints.
      /// 
      /// String which the barcode encodes
      /// 
      public Result decode(BinaryBitmap image, IDictionaryobject> hints)
      {
         DecoderResult decoderResult;
         ResultPoint[] points;
         if (image == null || image.BlackMatrix == null)
         {
            // something is wrong with the image
            return null;
         }
         if (hints != null && hints.ContainsKey(DecodeHintType.PURE_BARCODE)) // 纯barcode图片
         {
            var bits = extractPureBits(image.BlackMatrix);
            if (bits == null)
               return null;
            decoderResult = decoder.decode(bits, hints);
            points = NO_POINTS;
         }
         else
         {
            var detectorResult = new Detector(image.BlackMatrix).detect(hints); // 检测barcode
            if (detectorResult == null)
               return null;
            decoderResult = decoder.decode(detectorResult.Bits, hints); // 解码barcode
            points = detectorResult.Points;
         }
         if (decoderResult == null)
            return null;

         // If the code was mirrored: swap the bottom-left and the top-right points.
         var data = decoderResult.Other as QRCodeDecoderMetaData;
         if (data != null)
         {
            data.applyMirroredCorrection(points);
         }

         var result = new Result(decoderResult.Text, decoderResult.RawBytes, points, BarcodeFormat.QR_CODE);
         var byteSegments = decoderResult.ByteSegments;
         if (byteSegments != null)
         {
            result.putMetadata(ResultMetadataType.BYTE_SEGMENTS, byteSegments);
         }
         var ecLevel = decoderResult.ECLevel;
         if (ecLevel != null)
         {
            result.putMetadata(ResultMetadataType.ERROR_CORRECTION_LEVEL, ecLevel);
         }
         if (decoderResult.StructuredAppend)
         {
            result.putMetadata(ResultMetadataType.STRUCTURED_APPEND_SEQUENCE, decoderResult.StructuredAppendSequenceNumber);
            result.putMetadata(ResultMetadataType.STRUCTURED_APPEND_PARITY, decoderResult.StructuredAppendParity);
         }
         return result;
      }

 

qrcode->detector目录下的Detector类:

namespace ZXing.QrCode.Internal
{
   /// 
   /// 

Encapsulates logic that can detect a QR Code in an image, even if the QR Code /// is rotated or skewed, or partially obscured.

///
/// Sean Owen public class Detector { private readonly BitMatrix image; private ResultPointCallback resultPointCallback; /// /// Initializes a new instance of the class. /// /// The image. public Detector(BitMatrix image) { this.image = image; } /// /// Gets the image. /// virtual protected internal BitMatrix Image { get { return image; } } /// /// Gets the result point callback. /// virtual protected internal ResultPointCallback ResultPointCallback { get { return resultPointCallback; } } /// ///

Detects a QR Code in an image, simply.

///
/// /// encapsulating results of detecting a QR Code /// public virtual DetectorResult detect() { return detect(null); } /// ///

Detects a QR Code in an image, simply.

///
/// optional hints to detector /// /// encapsulating results of detecting a QR Code /// public virtual DetectorResult detect(IDictionary hints) { resultPointCallback = hints == null || !hints.ContainsKey(DecodeHintType.NEED_RESULT_POINT_CALLBACK) ? null : (ResultPointCallback)hints[DecodeHintType.NEED_RESULT_POINT_CALLBACK]; FinderPatternFinder finder = new FinderPatternFinder(image, resultPointCallback); FinderPatternInfo info = finder.find(hints); if (info == null) return null; return processFinderPatternInfo(info); } /// /// Processes the finder pattern info. /// /// The info. /// protected internal virtual DetectorResult processFinderPatternInfo(FinderPatternInfo info) { FinderPattern topLeft = info.TopLeft; FinderPattern topRight = info.TopRight; FinderPattern bottomLeft = info.BottomLeft; float moduleSize = calculateModuleSize(topLeft, topRight, bottomLeft); if (moduleSize < 1.0f) { return null; } int dimension; if (!computeDimension(topLeft, topRight, bottomLeft, moduleSize, out dimension)) return null; Internal.Version provisionalVersion = Internal.Version.getProvisionalVersionForDimension(dimension); if (provisionalVersion == null) return null; int modulesBetweenFPCenters = provisionalVersion.DimensionForVersion - 7; AlignmentPattern alignmentPattern = null; // Anything above version 1 has an alignment pattern if (provisionalVersion.AlignmentPatternCenters.Length > 0) { // Guess where a "bottom right" finder pattern would have been float bottomRightX = topRight.X - topLeft.X + bottomLeft.X; float bottomRightY = topRight.Y - topLeft.Y + bottomLeft.Y; // Estimate that alignment pattern is closer by 3 modules // from "bottom right" to known top left location //UPGRADE_WARNING: Data types in Visual C# might be different. Verify the accuracy of narrowing conversions. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1042'" float correctionToTopLeft = 1.0f - 3.0f / (float)modulesBetweenFPCenters; //UPGRADE_WARNING: Data types in Visual C# might be different. Verify the accuracy of narrowing conversions. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1042'" int estAlignmentX = (int)(topLeft.X + correctionToTopLeft * (bottomRightX - topLeft.X)); //UPGRADE_WARNING: Data types in Visual C# might be different. Verify the accuracy of narrowing conversions. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1042'" int estAlignmentY = (int)(topLeft.Y + correctionToTopLeft * (bottomRightY - topLeft.Y)); // Kind of arbitrary -- expand search radius before giving up for (int i = 4; i <= 16; i <<= 1) { alignmentPattern = findAlignmentInRegion(moduleSize, estAlignmentX, estAlignmentY, (float)i); if (alignmentPattern == null) continue; break; } // If we didn't find alignment pattern... well try anyway without it } PerspectiveTransform transform = createTransform(topLeft, topRight, bottomLeft, alignmentPattern, dimension); BitMatrix bits = sampleGrid(image, transform, dimension); if (bits == null) return null; ResultPoint[] points; if (alignmentPattern == null) { points = new ResultPoint[] { bottomLeft, topLeft, topRight }; } else { points = new ResultPoint[] { bottomLeft, topLeft, topRight, alignmentPattern }; } return new DetectorResult(bits, points); } private static PerspectiveTransform createTransform(ResultPoint topLeft, ResultPoint topRight, ResultPoint bottomLeft, ResultPoint alignmentPattern, int dimension) { //UPGRADE_WARNING: Data types in Visual C# might be different. Verify the accuracy of narrowing conversions. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1042'" float dimMinusThree = (float)dimension - 3.5f; float bottomRightX; float bottomRightY; float sourceBottomRightX; float sourceBottomRightY; if (alignmentPattern != null) { bottomRightX = alignmentPattern.X; bottomRightY = alignmentPattern.Y; sourceBottomRightX = sourceBottomRightY = dimMinusThree - 3.0f; } else { // Don't have an alignment pattern, just make up the bottom-right point bottomRightX = (topRight.X - topLeft.X) + bottomLeft.X; bottomRightY = (topRight.Y - topLeft.Y) + bottomLeft.Y; sourceBottomRightX = sourceBottomRightY = dimMinusThree; } return PerspectiveTransform.quadrilateralToQuadrilateral( 3.5f, 3.5f, dimMinusThree, 3.5f, sourceBottomRightX, sourceBottomRightY, 3.5f, dimMinusThree, topLeft.X, topLeft.Y, topRight.X, topRight.Y, bottomRightX, bottomRightY, bottomLeft.X, bottomLeft.Y); } private static BitMatrix sampleGrid(BitMatrix image, PerspectiveTransform transform, int dimension) { GridSampler sampler = GridSampler.Instance; return sampler.sampleGrid(image, dimension, dimension, transform); } ///

Computes the dimension (number of modules on a size) of the QR Code based on the position /// of the finder patterns and estimated module size.

///
private static bool computeDimension(ResultPoint topLeft, ResultPoint topRight, ResultPoint bottomLeft, float moduleSize, out int dimension) { int tltrCentersDimension = MathUtils.round(ResultPoint.distance(topLeft, topRight) / moduleSize); int tlblCentersDimension = MathUtils.round(ResultPoint.distance(topLeft, bottomLeft) / moduleSize); dimension = ((tltrCentersDimension + tlblCentersDimension) >> 1) + 7; switch (dimension & 0x03) { // mod 4 case 0: dimension++; break; // 1? do nothing case 2: dimension--; break; case 3: return true; } return true; } ///

Computes an average estimated module size based on estimated derived from the positions /// of the three finder patterns.

///
protected internal virtual float calculateModuleSize(ResultPoint topLeft, ResultPoint topRight, ResultPoint bottomLeft) { // Take the average return (calculateModuleSizeOneWay(topLeft, topRight) + calculateModuleSizeOneWay(topLeft, bottomLeft)) / 2.0f; } ///

Estimates module size based on two finder patterns -- it uses /// {@link #sizeOfBlackWhiteBlackRunBothWays(int, int, int, int)} to figure the /// width of each, measuring along the axis between their centers.

///
private float calculateModuleSizeOneWay(ResultPoint pattern, ResultPoint otherPattern) { //UPGRADE_WARNING: Data types in Visual C# might be different. Verify the accuracy of narrowing conversions. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1042'" float moduleSizeEst1 = sizeOfBlackWhiteBlackRunBothWays((int)pattern.X, (int)pattern.Y, (int)otherPattern.X, (int)otherPattern.Y); //UPGRADE_WARNING: Data types in Visual C# might be different. Verify the accuracy of narrowing conversions. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1042'" float moduleSizeEst2 = sizeOfBlackWhiteBlackRunBothWays((int)otherPattern.X, (int)otherPattern.Y, (int)pattern.X, (int)pattern.Y); if (Single.IsNaN(moduleSizeEst1)) { return moduleSizeEst2 / 7.0f; } if (Single.IsNaN(moduleSizeEst2)) { return moduleSizeEst1 / 7.0f; } // Average them, and divide by 7 since we've counted the width of 3 black modules, // and 1 white and 1 black module on either side. Ergo, divide sum by 14. return (moduleSizeEst1 + moduleSizeEst2) / 14.0f; } /// See {@link #sizeOfBlackWhiteBlackRun(int, int, int, int)}; computes the total width of /// a finder pattern by looking for a black-white-black run from the center in the direction /// of another point (another finder pattern center), and in the opposite direction too. /// private float sizeOfBlackWhiteBlackRunBothWays(int fromX, int fromY, int toX, int toY) { float result = sizeOfBlackWhiteBlackRun(fromX, fromY, toX, toY); // Now count other way -- don't run off image though of course float scale = 1.0f; int otherToX = fromX - (toX - fromX); if (otherToX < 0) { //UPGRADE_WARNING: Data types in Visual C# might be different. Verify the accuracy of narrowing conversions. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1042'" scale = (float)fromX / (float)(fromX - otherToX); otherToX = 0; } else if (otherToX >= image.Width) { //UPGRADE_WARNING: Data types in Visual C# might be different. Verify the accuracy of narrowing conversions. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1042'" scale = (float)(image.Width - 1 - fromX) / (float)(otherToX - fromX); otherToX = image.Width - 1; } //UPGRADE_WARNING: Data types in Visual C# might be different. Verify the accuracy of narrowing conversions. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1042'" int otherToY = (int)(fromY - (toY - fromY) * scale); scale = 1.0f; if (otherToY < 0) { //UPGRADE_WARNING: Data types in Visual C# might be different. Verify the accuracy of narrowing conversions. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1042'" scale = (float)fromY / (float)(fromY - otherToY); otherToY = 0; } else if (otherToY >= image.Height) { //UPGRADE_WARNING: Data types in Visual C# might be different. Verify the accuracy of narrowing conversions. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1042'" scale = (float)(image.Height - 1 - fromY) / (float)(otherToY - fromY); otherToY = image.Height - 1; } //UPGRADE_WARNING: Data types in Visual C# might be different. Verify the accuracy of narrowing conversions. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1042'" otherToX = (int)(fromX + (otherToX - fromX) * scale); result += sizeOfBlackWhiteBlackRun(fromX, fromY, otherToX, otherToY); return result - 1.0f; // -1 because we counted the middle pixel twice } ///

This method traces a line from a point in the image, in the direction towards another point. /// It begins in a black region, and keeps going until it finds white, then black, then white again. /// It reports the distance from the start to this point.

/// ///

This is used when figuring out how wide a finder pattern is, when the finder pattern /// may be skewed or rotated.

///
private float sizeOfBlackWhiteBlackRun(int fromX, int fromY, int toX, int toY) { // Mild variant of Bresenham's algorithm; // see http://en.wikipedia.org/wiki/Bresenham's_line_algorithm bool steep = Math.Abs(toY - fromY) > Math.Abs(toX - fromX); if (steep) { int temp = fromX; fromX = fromY; fromY = temp; temp = toX; toX = toY; toY = temp; } int dx = Math.Abs(toX - fromX); int dy = Math.Abs(toY - fromY); int error = -dx >> 1; int xstep = fromX < toX ? 1 : -1; int ystep = fromY < toY ? 1 : -1; // In black pixels, looking for white, first or second time. int state = 0; // Loop up until x == toX, but not beyond int xLimit = toX + xstep; for (int x = fromX, y = fromY; x != xLimit; x += xstep) { int realX = steep ? y : x; int realY = steep ? x : y; // Does current pixel mean we have moved white to black or vice versa? // Scanning black in state 0,2 and white in state 1, so if we find the wrong // color, advance to next state or end if we are in state 2 already if ((state == 1) == image[realX, realY]) { if (state == 2) { return MathUtils.distance(x, y, fromX, fromY); } state++; } error += dy; if (error > 0) { if (y == toY) { break; } y += ystep; error -= dx; } } // Found black-white-black; give the benefit of the doubt that the next pixel outside the image // is "white" so this last point at (toX+xStep,toY) is the right ending. This is really a // small approximation; (toX+xStep,toY+yStep) might be really correct. Ignore this. if (state == 2) { return MathUtils.distance(toX + xstep, toY, fromX, fromY); } // else we didn't find even black-white-black; no estimate is really possible return Single.NaN; } /// ///

Attempts to locate an alignment pattern in a limited region of the image, which is /// guessed to contain it. This method uses {@link AlignmentPattern}.

///
/// estimated module size so far /// x coordinate of center of area probably containing alignment pattern /// y coordinate of above /// number of pixels in all directions to search from the center /// /// if found, or null otherwise /// protected AlignmentPattern findAlignmentInRegion(float overallEstModuleSize, int estAlignmentX, int estAlignmentY, float allowanceFactor) { // Look for an alignment pattern (3 modules in size) around where it // should be //UPGRADE_WARNING: Data types in Visual C# might be different. Verify the accuracy of narrowing conversions. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1042'" int allowance = (int)(allowanceFactor * overallEstModuleSize); int alignmentAreaLeftX = Math.Max(0, estAlignmentX - allowance); int alignmentAreaRightX = Math.Min(image.Width - 1, estAlignmentX + allowance); if (alignmentAreaRightX - alignmentAreaLeftX < overallEstModuleSize * 3) { return null; } int alignmentAreaTopY = Math.Max(0, estAlignmentY - allowance); int alignmentAreaBottomY = Math.Min(image.Height - 1, estAlignmentY + allowance); var alignmentFinder = new AlignmentPatternFinder( image, alignmentAreaLeftX, alignmentAreaTopY, alignmentAreaRightX - alignmentAreaLeftX, alignmentAreaBottomY - alignmentAreaTopY, overallEstModuleSize, resultPointCallback); return alignmentFinder.find(); } } }

 

qrcode->detector目录下的FinderPatternFinder类:

/*
* Copyright 2007 ZXing authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*      http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

using System;
using System.Collections.Generic;

using ZXing.Common;

namespace ZXing.QrCode.Internal
{
   /// 
   /// 

This class attempts to find finder patterns in a QR Code. Finder patterns are the square /// markers at three corners of a QR Code.

/// ///

This class is thread-safe but not reentrant. Each thread must allocate its own object. ///

/// Sean Owen public class FinderPatternFinder { private const int CENTER_QUORUM = 2; /// /// 1 pixel/module times 3 modules/center /// protected internal const int MIN_SKIP = 3; /// /// support up to version 10 for mobile clients /// protected internal const int MAX_MODULES = 57; private const int INTEGER_MATH_SHIFT = 8; private readonly BitMatrix image; private List possibleCenters; // Records the alignment patterns cordination information private bool hasSkipped; private readonly int[] crossCheckStateCount; private readonly ResultPointCallback resultPointCallback; /// ///

Creates a finder that will search the image for three finder patterns.

///
/// image to search public FinderPatternFinder(BitMatrix image) : this(image, null) { } /// /// Initializes a new instance of the class. /// /// The image. /// The result point callback. public FinderPatternFinder(BitMatrix image, ResultPointCallback resultPointCallback) { this.image = image; this.possibleCenters = new List(); this.crossCheckStateCount = new int[5]; this.resultPointCallback = resultPointCallback; } /// /// Gets the image. /// virtual protected internal BitMatrix Image { get { return image; } } /// /// Gets the possible centers. /// virtual protected internal List PossibleCenters { get { return possibleCenters; } } internal virtual FinderPatternInfo find(IDictionaryobject> hints) { bool tryHarder = hints != null && hints.ContainsKey(DecodeHintType.TRY_HARDER); bool pureBarcode = hints != null && hints.ContainsKey(DecodeHintType.PURE_BARCODE); int maxI = image.Height; int maxJ = image.Width; // We are looking for black/white/black/white/black modules in // 1:1:3:1:1 ratio; this tracks the number of such modules seen so far // Let's assume that the maximum version QR Code we support takes up 1/4 the height of the // image, and then account for the center being 3 modules in size. This gives the smallest // number of pixels the center could be, so skip this often. When trying harder, look for all // QR versions regardless of how dense they are. int iSkip = (3 * maxI) / (4 * MAX_MODULES); if (iSkip < MIN_SKIP || tryHarder) { iSkip = MIN_SKIP; } bool done = false; int[] stateCount = new int[5]; for (int i = iSkip - 1; i < maxI && !done; i += iSkip) { // Get a row of black/white values stateCount[0] = 0; stateCount[1] = 0; stateCount[2] = 0; stateCount[3] = 0; stateCount[4] = 0; int currentState = 0; for (int j = 0; j < maxJ; j++) { if (image[j, i]) { // Black pixel if ((currentState & 1) == 1) { // Counting white pixels currentState++; } stateCount[currentState]++; } else { // White pixel if ((currentState & 1) == 0) { // Counting black pixels if (currentState == 4) { // A winner? if (foundPatternCross(stateCount)) { // Yes(possible alignment pattern was found) bool confirmed = handlePossibleCenter(stateCount, i, j, pureBarcode); // Check whether the alignment pattern is true or fake if (confirmed) { // Start examining every other line. Checking each line turned out to be too // expensive and didn't improve performance. iSkip = 2; if (hasSkipped) // If at least two alignment patterns were found and the skip parameter has been calculated { done = haveMultiplyConfirmedCenters(); // Check whether we have found at least 3 finder patterns } else { int rowSkip = findRowSkip(); // Calculate number of rows we could safely skip during scanning, based on the first two finder patterns if (rowSkip > stateCount[2]) { // Skip rows between row of lower confirmed center and top of presumed third confirmed center // but back up a bit to get a full chance of detecting it, entire width of center of finder pattern // Skip by rowSkip, but back off by stateCount[2] (size of last center of pattern we saw) // to be conservative, and also back off by iSkip which is about to be re-added i += rowSkip - stateCount[2] - iSkip; j = maxJ - 1; } } } else { stateCount[0] = stateCount[2]; stateCount[1] = stateCount[3]; stateCount[2] = stateCount[4]; stateCount[3] = 1; stateCount[4] = 0; currentState = 3; continue; } // Clear state to start looking again currentState = 0; stateCount[0] = 0; stateCount[1] = 0; stateCount[2] = 0; stateCount[3] = 0; stateCount[4] = 0; } else { // No, shift counts back by two stateCount[0] = stateCount[2]; stateCount[1] = stateCount[3]; stateCount[2] = stateCount[4]; stateCount[3] = 1; stateCount[4] = 0; currentState = 3; } } else { stateCount[++currentState]++; } } else { // Counting white pixels stateCount[currentState]++; } } } if (foundPatternCross(stateCount)) { bool confirmed = handlePossibleCenter(stateCount, i, maxJ, pureBarcode); if (confirmed) { iSkip = stateCount[0]; if (hasSkipped) { // Found a third one done = haveMultiplyConfirmedCenters(); } } } } FinderPattern[] patternInfo = selectBestPatterns(); if (patternInfo == null) return null; ResultPoint.orderBestPatterns(patternInfo); return new FinderPatternInfo(patternInfo); } /// Given a count of black/white/black/white/black pixels just seen and an end position, /// figures the location of the center of this run. /// private static float? centerFromEnd(int[] stateCount, int end) { var result = (end - stateCount[4] - stateCount[3]) - stateCount[2] / 2.0f; if (Single.IsNaN(result)) return null; return result; } /// count of black/white/black/white/black pixels just read /// /// true iff the proportions of the counts is close enough to the 1/1/3/1/1 ratios /// used by finder patterns to be considered a match /// protected internal static bool foundPatternCross(int[] stateCount) { int totalModuleSize = 0; for (int i = 0; i < 5; i++) { int count = stateCount[i]; if (count == 0) { return false; } totalModuleSize += count; } if (totalModuleSize < 7) { return false; } int moduleSize = (totalModuleSize << INTEGER_MATH_SHIFT) / 7; // 1+1+3+1+1=7, at least 7 modules int maxVariance = moduleSize / 2; // Allow less than 50% variance from 1-1-3-1-1 proportions return Math.Abs(moduleSize - (stateCount[0] << INTEGER_MATH_SHIFT)) < maxVariance && Math.Abs(moduleSize - (stateCount[1] << INTEGER_MATH_SHIFT)) < maxVariance && Math.Abs(3 * moduleSize - (stateCount[2] << INTEGER_MATH_SHIFT)) < 3 * maxVariance && Math.Abs(moduleSize - (stateCount[3] << INTEGER_MATH_SHIFT)) < maxVariance && Math.Abs(moduleSize - (stateCount[4] << INTEGER_MATH_SHIFT)) < maxVariance; } private int[] CrossCheckStateCount { get { crossCheckStateCount[0] = 0; crossCheckStateCount[1] = 0; crossCheckStateCount[2] = 0; crossCheckStateCount[3] = 0; crossCheckStateCount[4] = 0; return crossCheckStateCount; } } /// /// After a vertical and horizontal scan finds a potential finder pattern, this method /// "cross-cross-cross-checks" by scanning down diagonally through the center of the possible /// finder pattern to see if the same proportion is detected. /// /// row where a finder pattern was detected /// center of the section that appears to cross a finder pattern /// maximum reasonable number of modules that should be observed in any reading state, based on the results of the horizontal scan /// The original state count total. /// true if proportions are withing expected limits private bool crossCheckDiagonal(int startI, int centerJ, int maxCount, int originalStateCountTotal) { int maxI = image.Height; int maxJ = image.Width; int[] stateCount = CrossCheckStateCount; // Start counting up, left from center finding black center mass int i = 0; while (startI - i >= 0 && image[centerJ - i, startI - i]) { stateCount[2]++; i++; } if ((startI - i < 0) || (centerJ - i < 0)) { return false; } // Continue up, left finding white space while ((startI - i >= 0) && (centerJ - i >= 0) && !image[centerJ - i, startI - i] && stateCount[1] <= maxCount) { stateCount[1]++; i++; } // If already too many modules in this state or ran off the edge: if ((startI - i < 0) || (centerJ - i < 0) || stateCount[1] > maxCount) { return false; } // Continue up, left finding black border while ((startI - i >= 0) && (centerJ - i >= 0) && image[centerJ - i, startI - i] && stateCount[0] <= maxCount) { stateCount[0]++; i++; } if (stateCount[0] > maxCount) { return false; } // Now also count down, right from center i = 1; while ((startI + i < maxI) && (centerJ + i < maxJ) && image[centerJ + i, startI + i]) { stateCount[2]++; i++; } // Ran off the edge? if ((startI + i >= maxI) || (centerJ + i >= maxJ)) { return false; } while ((startI + i < maxI) && (centerJ + i < maxJ) && !image[centerJ + i, startI + i] && stateCount[3] < maxCount) { stateCount[3]++; i++; } if ((startI + i >= maxI) || (centerJ + i >= maxJ) || stateCount[3] >= maxCount) { return false; } while ((startI + i < maxI) && (centerJ + i < maxJ) && image[centerJ + i, startI + i] && stateCount[4] < maxCount) { stateCount[4]++; i++; } if (stateCount[4] >= maxCount) { return false; } // If we found a finder-pattern-like section, but its size is more than 100% different than // the original, assume it's a false positive int stateCountTotal = stateCount[0] + stateCount[1] + stateCount[2] + stateCount[3] + stateCount[4]; return Math.Abs(stateCountTotal - originalStateCountTotal) < 2*originalStateCountTotal && foundPatternCross(stateCount); } /// ///

After a horizontal scan finds a potential finder pattern, this method /// "cross-checks" by scanning down vertically through the center of the possible /// finder pattern to see if the same proportion is detected.

///
/// row where a finder pattern was detected /// center of the section that appears to cross a finder pattern /// maximum reasonable number of modules that should be /// observed in any reading state, based on the results of the horizontal scan /// The original state count total. /// /// vertical center of finder pattern, or null if not found /// private float? crossCheckVertical(int startI, int centerJ, int maxCount, int originalStateCountTotal) { int maxI = image.Height; int[] stateCount = CrossCheckStateCount; // Start counting up from center int i = startI; while (i >= 0 && image[centerJ, i]) { stateCount[2]++; i--; } if (i < 0) { return null; } while (i >= 0 && !image[centerJ, i] && stateCount[1] <= maxCount) { stateCount[1]++; i--; } // If already too many modules in this state or ran off the edge: if (i < 0 || stateCount[1] > maxCount) { return null; } while (i >= 0 && image[centerJ, i] && stateCount[0] <= maxCount) { stateCount[0]++; i--; } if (stateCount[0] > maxCount) { return null; } // Now also count down from center i = startI + 1; while (i < maxI && image[centerJ, i]) { stateCount[2]++; i++; } if (i == maxI) { return null; } while (i < maxI && !image[centerJ, i] && stateCount[3] < maxCount) { stateCount[3]++; i++; } if (i == maxI || stateCount[3] >= maxCount) { return null; } while (i < maxI && image[centerJ, i] && stateCount[4] < maxCount) { stateCount[4]++; i++; } if (stateCount[4] >= maxCount) { return null; } // If we found a finder-pattern-like section, but its size is more than 40% different than // the original, assume it's a false positive int stateCountTotal = stateCount[0] + stateCount[1] + stateCount[2] + stateCount[3] + stateCount[4]; if (5 * Math.Abs(stateCountTotal - originalStateCountTotal) >= 2 * originalStateCountTotal) { return null; } return foundPatternCross(stateCount) ? centerFromEnd(stateCount, i) : null; } ///

Like {@link #crossCheckVertical(int, int, int, int)}, and in fact is basically identical, /// except it reads horizontally instead of vertically. This is used to cross-cross /// check a vertical cross check and locate the real center of the alignment pattern.

///
private float? crossCheckHorizontal(int startJ, int centerI, int maxCount, int originalStateCountTotal) { int maxJ = image.Width; int[] stateCount = CrossCheckStateCount; int j = startJ; while (j >= 0 && image[j, centerI]) { stateCount[2]++; j--; } if (j < 0) { return null; } while (j >= 0 && !image[j, centerI] && stateCount[1] <= maxCount) { stateCount[1]++; j--; } if (j < 0 || stateCount[1] > maxCount) { return null; } while (j >= 0 && image[j, centerI] && stateCount[0] <= maxCount) { stateCount[0]++; j--; } if (stateCount[0] > maxCount) { return null; } j = startJ + 1; while (j < maxJ && image[j, centerI]) { stateCount[2]++; j++; } if (j == maxJ) { return null; } while (j < maxJ && !image[j, centerI] && stateCount[3] < maxCount) { stateCount[3]++; j++; } if (j == maxJ || stateCount[3] >= maxCount) { return null; } while (j < maxJ && image[j, centerI] && stateCount[4] < maxCount) { stateCount[4]++; j++; } if (stateCount[4] >= maxCount) { return null; } // If we found a finder-pattern-like section, but its size is significantly different than // the original, assume it's a false positive int stateCountTotal = stateCount[0] + stateCount[1] + stateCount[2] + stateCount[3] + stateCount[4]; if (5 * Math.Abs(stateCountTotal - originalStateCountTotal) >= originalStateCountTotal) { return null; } return foundPatternCross(stateCount) ? centerFromEnd(stateCount, j) : null; } /// ///

This is called when a horizontal scan finds a possible alignment pattern. It will /// cross check with a vertical scan, and if successful, will, ah, cross-cross-check /// with another horizontal scan. This is needed primarily to locate the real horizontal /// center of the pattern in cases of extreme skew. /// And then we cross-cross-cross check with another diagonal scan.

/// If that succeeds the finder pattern location is added to a list that tracks /// the number of times each location has been nearly-matched as a finder pattern. /// Each additional find is more evidence that the location is in fact a finder /// pattern center ///
/// reading state module counts from horizontal scan /// row where finder pattern may be found /// end of possible finder pattern in row /// if set to true [pure barcode]. /// /// true if a finder pattern candidate was found this time /// protected bool handlePossibleCenter(int[] stateCount, int i, int j, bool pureBarcode) { int stateCountTotal = stateCount[0] + stateCount[1] + stateCount[2] + stateCount[3] + stateCount[4]; float? centerJ = centerFromEnd(stateCount, j); if (centerJ == null) return false; float? centerI = crossCheckVertical(i, (int)centerJ.Value, stateCount[2], stateCountTotal); // Cross Check Vertical if (centerI != null) { // Re-cross check centerJ = crossCheckHorizontal((int)centerJ.Value, (int)centerI.Value, stateCount[2], stateCountTotal); // Cross Check Horizontal if (centerJ != null && (!pureBarcode || crossCheckDiagonal((int) centerI, (int) centerJ, stateCount[2], stateCountTotal))) // Cross Check Diagonal { float estimatedModuleSize = stateCountTotal / 7.0f; bool found = false; for (int index = 0; index < possibleCenters.Count; index++) { var center = possibleCenters[index]; // Look for about the same center and module size: if (center.aboutEquals(estimatedModuleSize, centerI.Value, centerJ.Value)) { possibleCenters.RemoveAt(index); possibleCenters.Insert(index, center.combineEstimate(centerI.Value, centerJ.Value, estimatedModuleSize)); found = true; break; } } if (!found) { var point = new FinderPattern(centerJ.Value, centerI.Value, estimatedModuleSize); possibleCenters.Add(point); if (resultPointCallback != null) { resultPointCallback(point); } } return true; } } return false; } /// number of rows we could safely skip during scanning, based on the first /// two finder patterns that have been located. In some cases their position will /// allow us to infer that the third pattern must lie below a certain point farther /// down in the image. /// private int findRowSkip() { int max = possibleCenters.Count; if (max <= 1) { return 0; } ResultPoint firstConfirmedCenter = null; foreach (var center in possibleCenters) { if (center.Count >= CENTER_QUORUM) { if (firstConfirmedCenter == null) { firstConfirmedCenter = center; } else { // We have two confirmed centers // How far down can we skip before resuming looking for the next // pattern? In the worst case, only the difference between the // difference in the x / y coordinates of the two centers. // This is the case where you find top left last. hasSkipped = true; //UPGRADE_WARNING: Data types in Visual C# might be different. Verify the accuracy of narrowing conversions. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1042'" return (int)(Math.Abs(firstConfirmedCenter.X - center.X) - Math.Abs(firstConfirmedCenter.Y - center.Y)) / 2; } } } return 0; } /// true if we have found at least 3 finder patterns that have been detected /// at least {@link #CENTER_QUORUM} times each, and, the estimated module size of the /// candidates is "pretty similar" /// private bool haveMultiplyConfirmedCenters() { int confirmedCount = 0; float totalModuleSize = 0.0f; int max = possibleCenters.Count; foreach (var pattern in possibleCenters) { if (pattern.Count >= CENTER_QUORUM) { confirmedCount++; totalModuleSize += pattern.EstimatedModuleSize; } } if (confirmedCount < 3) { return false; } // OK, we have at least 3 confirmed centers, but, it's possible that one is a "false positive" // and that we need to keep looking. We detect this by asking if the estimated module sizes // vary too much. We arbitrarily say that when the total deviation from average exceeds // 5% of the total module size estimates, it's too much. float average = totalModuleSize / max; float totalDeviation = 0.0f; for (int i = 0; i < max; i++) { var pattern = possibleCenters[i]; totalDeviation += Math.Abs(pattern.EstimatedModuleSize - average); } return totalDeviation <= 0.05f * totalModuleSize; } /// the 3 best {@link FinderPattern}s from our list of candidates. The "best" are /// those that have been detected at least {@link #CENTER_QUORUM} times, and whose module /// size differs from the average among those patterns the least /// private FinderPattern[] selectBestPatterns() { int startSize = possibleCenters.Count; if (startSize < 3) { // Couldn't find enough finder patterns return null; } // Filter outlier possibilities whose module size is too different if (startSize > 3) { // But we can only afford to do so if we have at least 4 possibilities to choose from float totalModuleSize = 0.0f; float square = 0.0f; foreach (var center in possibleCenters) { float size = center.EstimatedModuleSize; totalModuleSize += size; square += size * size; } float average = totalModuleSize / startSize; float stdDev = (float)Math.Sqrt(square / startSize - average * average); possibleCenters.Sort(new FurthestFromAverageComparator(average)); float limit = Math.Max(0.2f * average, stdDev); for (int i = 0; i < possibleCenters.Count && possibleCenters.Count > 3; i++) { FinderPattern pattern = possibleCenters[i]; if (Math.Abs(pattern.EstimatedModuleSize - average) > limit) { possibleCenters.RemoveAt(i); i--; } } } if (possibleCenters.Count > 3) { // Throw away all but those first size candidate points we found. float totalModuleSize = 0.0f; foreach (var possibleCenter in possibleCenters) { totalModuleSize += possibleCenter.EstimatedModuleSize; } float average = totalModuleSize / possibleCenters.Count; possibleCenters.Sort(new CenterComparator(average)); //possibleCenters.subList(3, possibleCenters.Count).clear(); possibleCenters = possibleCenters.GetRange(0, 3); } return new[] { possibleCenters[0], possibleCenters[1], possibleCenters[2] }; } /// /// Orders by furthest from average /// private sealed class FurthestFromAverageComparator : IComparer { private readonly float average; public FurthestFromAverageComparator(float f) { average = f; } public int Compare(FinderPattern x, FinderPattern y) { float dA = Math.Abs(y.EstimatedModuleSize - average); float dB = Math.Abs(x.EstimatedModuleSize - average); return dA < dB ? -1 : dA == dB ? 0 : 1; } } ///

Orders by {@link FinderPattern#getCount()}, descending.

private sealed class CenterComparator : IComparer { private readonly float average; public CenterComparator(float f) { average = f; } public int Compare(FinderPattern x, FinderPattern y) { if (y.Count == x.Count) { float dA = Math.Abs(y.EstimatedModuleSize - average); float dB = Math.Abs(x.EstimatedModuleSize - average); return dA < dB ? 1 : dA == dB ? 0 : -1; } return y.Count - x.Count; } } } }
View Code

寻找PatternFinder流程为:先按照1:1:3:1:1的比例逐行扫描,寻找Qrcode的定位点并校验点位点(横向,竖向,对角线斜向),找到最初两个定位点以后,

通过findRowSkip()更新隔行检测参数提高检测效率,继续寻找定位点直至定位点全部找到,然后通过selectBestPatterns()选择最优的定位点,然后将最优

定位点相关信息处理后返回供上层调用。

 

qrcode->decoder目录下的Decoder(密封)类:

 

2.源码架构

BarcodeReader类继承了BarcodeReaderGeneric类,实现了接口IBarcodeReader, IMultipleBarcodeReader:

public class BarcodeReader : BarcodeReaderGeneric, IBarcodeReader, IMultipleBarcodeReader

BarcodeReaderGeneric类实现了接口IBarcodeReaderGeneric, IMultipleBarcodeReaderGeneric。其中Decode虚拟方法为:

      /// 
      /// Tries to decode a barcode within an image which is given by a luminance source.
      /// That method gives a chance to prepare a luminance source completely before calling
      /// the time consuming decoding method. On the other hand there is a chance to create
      /// a luminance source which is independent from external resources (like Bitmap objects)
      /// and the decoding call can be made in a background thread.
      /// 
      /// The luminance source.
      /// 
      virtual public Result Decode(LuminanceSource luminanceSource)
      {
         var result = default(Result);
         var binarizer = CreateBinarizer(luminanceSource);
         var binaryBitmap = new BinaryBitmap(binarizer);
         var multiformatReader = Reader as MultiFormatReader;
         var rotationCount = 0;
         var rotationMaxCount = 1;

         if (AutoRotate)
         {
            Options.Hints[DecodeHintType.TRY_HARDER_WITHOUT_ROTATION] = true;
            rotationMaxCount = 4;
         }
         else
         {
            if (Options.Hints.ContainsKey(DecodeHintType.TRY_HARDER_WITHOUT_ROTATION))
               Options.Hints.Remove(DecodeHintType.TRY_HARDER_WITHOUT_ROTATION);
         }

         for (; rotationCount < rotationMaxCount; rotationCount++)
         {
            if (usePreviousState && multiformatReader != null)
            {
               result = multiformatReader.decodeWithState(binaryBitmap);
            }
            else
            {
               result = Reader.decode(binaryBitmap, Options.Hints);
               usePreviousState = true;
            }

            if (result == null)
            {
               if (TryInverted && luminanceSource.InversionSupported)
               {
                  binaryBitmap = new BinaryBitmap(CreateBinarizer(luminanceSource.invert()));
                  if (usePreviousState && multiformatReader != null)
                  {
                     result = multiformatReader.decodeWithState(binaryBitmap);
                  }
                  else
                  {
                     result = Reader.decode(binaryBitmap, Options.Hints);
                     usePreviousState = true;
                  }
               }
            }

            if (result != null ||
                !luminanceSource.RotateSupported ||
                !AutoRotate)
               break;

            binaryBitmap = new BinaryBitmap(CreateBinarizer(luminanceSource.rotateCounterClockwise()));
         }

         if (result != null)
         {
            if (result.ResultMetadata == null)
            {
               result.putMetadata(ResultMetadataType.ORIENTATION, rotationCount * 90);
            }
            else if (!result.ResultMetadata.ContainsKey(ResultMetadataType.ORIENTATION))
            {
               result.ResultMetadata[ResultMetadataType.ORIENTATION] = rotationCount * 90;
            }
            else
            {
               // perhaps the core decoder rotates the image already (can happen if TryHarder is specified)
               result.ResultMetadata[ResultMetadataType.ORIENTATION] = ((int)(result.ResultMetadata[ResultMetadataType.ORIENTATION]) + rotationCount * 90) % 360;
            }

            OnResultFound(result);
         }

         return result;
      }

 

2.编码(待续)

posted on 2017-02-23 14:11 jayhust 阅读( ...) 评论( ...) 编辑 收藏

转载于:https://www.cnblogs.com/jayhust/p/5890156.html

你可能感兴趣的:(【开源】ZXING的.NET版本源码解析)