KDtree干这个复杂度是不对的,重构不一定有作用
解释一下的话,因为复杂度是跟size相关的,所以重构作用不大,KDtree在查询最近点对中的作用仅仅是剪枝,可以构造数据使得他遍历O(n)个节点
hack kdtree
(上面这个是按照洛谷数据范围 n,m 3e5造的
int n, m, x, y, now, ans, op, cnt, d[2];
struct Node {
int Min[2], Max[2], d[2];
Node *ls, *rs;
Node (const pii &a, Node *b) {
Min[0] = Max[0] = d[0] = a.fi;
Max[1] = Min[1] = d[1] = a.se;
ls = rs = b;
}
Node () {}
inline void pushup() {
lop0(i, 2) Min[i] = min(d[i], min(ls->Min[i], rs->Min[i])), Max[i] = max(d[i], max(ls->Max[i], rs->Max[i]));
}
inline bool operator < (const Node &rhs) const {
return d[now] < rhs.d[now];
}
} S[1300005], *null = S, *root, *root1;
inline void init() {
null->Min[0] = null->Min[1] = 1e7, null->Max[0] = null->Max[1] = -1e7;//1e9çš„è¯ dis会爆int
null->ls = null->rs = null;
root1 = root = null;
}
inline Node *build(int l, int r) {
if (l > r) return null;
nth_element(S+l, S+mid, S+r+1);
Node *cur = &S[mid];
now ^= 1;
cur->ls = build(l, mid-1), cur->rs = build(mid+1, r);
return cur->pushup(), cur;
}
inline void insert(Node *&cur, int *d, bool now) {
if (cur == null) {
cur = &(S[++cnt] = Node(mp(d[0],d[1]), null));
return ;
}
insert(d[now] >= cur->d[now] ? cur->rs : cur->ls, d, !now);
cur->pushup();
}
inline int dis(Node *cur, const pii &a) {
return max(0, a.se - cur->Max[1]) + max(0, a.fi - cur->Max[0]) + max(0, cur->Min[0] - a.fi) + max(0, cur->Min[1] - a.se);
}
inline void query(Node *cur, const pii &a) {
chmin(ans, abs(cur->d[0] - a.fi) + abs(cur->d[1] - a.se));
int disl = dis(cur->ls, a), disr = dis(cur->rs, a);
if (disl < disr) {
if (disl < ans) query(cur->ls, a);
if (disr < ans) query(cur->rs, a);
}
else {
if (disr < ans) query(cur->rs, a);
if (disl < ans) query(cur->ls, a);
}
}
int main() {
init();
in, cnt, m;
lop1(i, cnt) {
in, x, y;
S[i] = Node(mp(x, y), null);
}
root = build(1, cnt);
while (m--) {
in, op, x, y;
if (op == 1) {
d[0] = x, d[1] = y;
insert(root, d, 0);
}
else {
ans = inft;
query(root, mp(x, y));
out, ans, '\n';
}
}
return 0;
}