Sprintboot redis 采用gzip和Snappy compress压缩数据

1 前言

怎么使用和结合Sprintboot + redis ,可以参照我前面的文章:https://blog.csdn.net/zzhongcy/article/details/102584028

这里主要讲述当生产环境中,单个redis数据很大时,我们可能就要考虑压缩数据后再存入redis了。

压缩数据优缺点:

  1. 优点1:压缩会减少redis存储数据量,增加redis的吞吐量
  2. 优点2:压缩会较少网络带宽
  3. 缺点就是会增加CPU消耗

2 Sprintboot redis配置

有两种配置方式,如下

2.1 方式1:RedisTemplate 配置

@Configuration
public class RedisConfig {
    @Bean
    public RedisTemplate redisTemplate(RedisConnectionFactory factory) {
        RedisTemplate template = new RedisTemplate<>();
        template.setConnectionFactory(factory);

        Jackson2JsonRedisSerializer jackson2JsonRedisSerializer = new Jackson2JsonRedisSerializer(Object.class);

        ObjectMapper om = new ObjectMapper();
        om.setVisibility(PropertyAccessor.ALL, JsonAutoDetect.Visibility.ANY);
        om.enableDefaultTyping(ObjectMapper.DefaultTyping.NON_FINAL);

        jackson2JsonRedisSerializer.setObjectMapper(om);

        StringRedisSerializer stringRedisSerializer = new StringRedisSerializer();
        // key采用String的序列化方式
        template.setKeySerializer(stringRedisSerializer);

        // hash的key也采用String的序列化方式
        template.setHashKeySerializer(stringRedisSerializer);

        // value序列化方式采用jackson
        template.setValueSerializer(jackson2JsonRedisSerializer);

        // hash的value序列化方式采用jackson
        template.setHashValueSerializer(jackson2JsonRedisSerializer);

        template.afterPropertiesSet();
        return template;
    }
}

其中存储方式代码是:

// value序列化方式采用jackson
template.setValueSerializer(jackson2JsonRedisSerializer);

2.2 方式2:RedisCacheConfiguration 配置

@Bean
public RedisCacheConfiguration redisCacheConfiguration (long defaultExpiration ) {

    Jackson2JsonRedisSerializer jackson2JsonRedisSerializer = new Jackson2JsonRedisSerializer(Object.class);

    //设置压缩格式
    ObjectMapper objectMapper = new ObjectMapper();
    objectMapper.setVisibility(PropertyAccessor.ALL, JsonAutoDetect.Visibility.ANY);
    objectMapper.activateDefaultTyping(
                    LaissezFaireSubTypeValidator.instance,
                    ObjectMapper.DefaultTyping.NON_FINAL,
                    JsonTypeInfo.As.WRAPPER_ARRAY);
    
    jackson2JsonRedisSerializer.setObjectMapper(objectMapper);

    //创建config
    RedisCacheConfiguration config = RedisCacheConfiguration.defaultCacheConfig();
    return config.entryTtl( Duration.ofSeconds( defaultExpiration ) )
         .serializeKeysWith( SerializationPair.fromSerializer( new StringRedisSerializer() ) )
         .serializeValuesWith( SerializationPair.fromSerializer( jackson2JsonRedisSerializer) );
} 
  

其中velue压缩设置是:

      .serializeValuesWith( SerializationPair.fromSerializer( jackson2JsonRedisSerializer)

      这里使用了自定义的Jackson2JsonRedisSerializer类,

      json数据内部包含java.util.ArrayList、com.server.model.class等类型字符串。

当然也可以使用默认的泛型格式GenericJackson2JsonRedisSerializer,如下:

      .serializeValuesWith( SerializationPair.fromSerializer( new GenericJackson2JsonRedisSerializer())

       json数据内部包含java.util.ArrayList、com.server.model.class、@class等类型字符串。

 

3 数据压缩

3.1 gzip压缩

public class RedisSerializerGzip extends JdkSerializationRedisSerializer {

    @Override
    public Object deserialize(byte[] bytes) {
        return super.deserialize(decompress(bytes));
    }

    @Override
    public byte[] serialize(Object object) {
        return compress(super.serialize(object));
    }


    private byte[] compress(byte[] content) {
        byte[] ret = null;
        ByteArrayOutputStream byteArrayOutputStream = null;
        try {
            byteArrayOutputStream = new ByteArrayOutputStream();
            GZIPOutputStream gzipOutputStream= new GZIPOutputStream(byteArrayOutputStream);
            gzipOutputStream.write(content);
            //gzipOutputStream.flush();     //只调用flush不会刷新,压缩类型的流需要执行close或者finish才会完成
            stream.close();   //内部调用finish

            ret = byteArrayOutputStream.toByteArray();
            byteArrayOutputStream.flush();
            byteArrayOutputStream.close();
        } catch (IOException e) {
            throw new SerializationException("Unable to compress data", e);
        }
        return ret;
    }

    private byte[] decompress(byte[] contentBytes) {
        byte[] ret = null;
        ByteArrayOutputStream out = null;
        try {
            out = new ByteArrayOutputStream();
            GZIPInputStream stream = new GZIPInputStream(new ByteArrayInputStream(contentBytes));
            IOUtils.copy(stream, out);
            stream.close();

            ret = out.toByteArray();
            out.flush();
            out.close();
        } catch (IOException e) {
            throw new SerializationException("Unable to decompress data", e);
        }
        return ret;
    }

}

注意:

//gzipOutputStream.flush();     //只调用flush不会刷新,压缩类型的流需要执行close或者finish才会完成
gzipOutputStream.close();   //内部调用finish

不然压缩数据不完成,解压会报错:

java.io.EOFException : Unexpected end of ZLIB input stream

at java.util.zip.InflaterInputStream.fill( InflaterInputStream.java:240)

at java.util.zip.InflaterInputStream.read( InflaterInputStream.java:158)

at java.util.zip.GZIPInputStream.read( GZIPInputStream.java:117)

 

3.1.1 自定缓冲区解压缩方式:

/**
     * GZIP解压缩
     * 
     * @param bytes
     * @return
     */
    public static byte[] uncompress(byte[] bytes) {
        if (bytes == null || bytes.length == 0) {
            return null;
        }
        ByteArrayOutputStream out = new ByteArrayOutputStream();
        ByteArrayInputStream in = new ByteArrayInputStream(bytes);
        try {
            GZIPInputStream ungzip = new GZIPInputStream(in);
            byte[] buffer = new byte[256];
            int n;
            while ((n = ungzip.read(buffer)) >= 0) {
                out.write(buffer, 0, n);
            }
        } catch (IOException e) {
            ApiLogger.error("gzip uncompress error.", e);
        }
 
        return out.toByteArray();
    }
 

    /**
     * 
     * @param bytes
     * @param encoding
     * @return
     */
    public static String uncompressToString(byte[] bytes, String encoding) {
        if (bytes == null || bytes.length == 0) {
            return null;
        }
        ByteArrayOutputStream out = new ByteArrayOutputStream();
        ByteArrayInputStream in = new ByteArrayInputStream(bytes);
        try {
            GZIPInputStream ungzip = new GZIPInputStream(in);
            byte[] buffer = new byte[256];
            int n;
            while ((n = ungzip.read(buffer)) >= 0) {
                out.write(buffer, 0, n);
            }
            return out.toString(encoding);
        } catch (IOException e) {
            ApiLogger.error("gzip uncompress to string error.", e);
        }
        return null;
    }

3.1.2 IOUtils.copy源码解读

其实IOUtils.copy函数内部,也是调用while ((n = ungzip.read(buffer)) >= 0)实现的。

public static int copy(InputStream input, OutputStream output) throws IOException {
        long count = copyLarge(input, output);
        return count > 2147483647L ? -1 : (int)count;
    }

    public static long copyLarge(InputStream input, OutputStream output) throws IOException {
        byte[] buffer = new byte[4096];
        long count = 0L;

        int n;
        for(boolean var5 = false; -1 != (n = input.read(buffer)); count += (long)n) {
            output.write(buffer, 0, n);
        }

        return count;
    }

只是IOUtils.copy内部缓冲区大小是4k,如果设置大点可能会提高读取速度。

 

3.2 Snappy压缩

import org.springframework.data.redis.serializer.JdkSerializationRedisSerializer;
import org.springframework.data.redis.serializer.RedisSerializer;
import org.springframework.data.redis.serializer.SerializationException;
import org.springframework.util.SerializationUtils;
import org.xerial.snappy.Snappy;
import java.io.Serializable;

public class RedisSerializerSnappy extends JdkSerializationRedisSerializer {

    private RedisSerializer innerSerializer;

    public RedisSerializerSnappy(RedisSerializer innerSerializer) {
        this.innerSerializer = innerSerializer;
    }

    @Override
    public Object deserialize(byte[] bytes) {
        return super.deserialize(decompress(bytes));
    }

    @Override
    public byte[] serialize(Object object) {
        return compress(super.serialize(object));
    }

    private byte[] compress(byte[] content) {
        try {
            byte[] bytes = innerSerializer != null ? innerSerializer.serialize(content)
                    : SerializationUtils.serialize((Serializable) content);
            return Snappy.compress(bytes);

        } catch (Exception e) {
            throw new SerializationException(e.getMessage(), e);
        }
    }

    private byte[] decompress(byte[] contentBytes) {
        try {
            byte[] bos = Snappy.uncompress(contentBytes);
            return (byte[]) (innerSerializer != null ? innerSerializer.deserialize(bos) : SerializationUtils.deserialize(bos));
        } catch (Exception e) {
            throw new SerializationException(e.getMessage(), e);
        }
    }
} 
  

3.3 压缩设置

这里就简单说明RedisTemplate的配置,RedisCacheConfiguration的配置可以参考上面说明。

@Bean
    public RedisTemplate redisTemplate(LettuceConnectionFactory connectionFactory) {
        RedisTemplate template = new RedisTemplate<>();
        template.setConnectionFactory(connectionFactory);

        // Set a custom serializer that will compress/decompress data to/from redis
        RedisSerializerGzip serializerGzip = new RedisSerializerGzip();
        template.setValueSerializer(serializerGzip);
        template.setHashValueSerializer(serializerGzip);


        //RedisSerializerSnappy serializerSnappy = new RedisSerializerSnappy(null);
        //redisTemplate.setValueSerializer(serializerSnappy);
        //redisTemplate.setHashValueSerializer(serializerSnappy);

        return template;
    }

这样就实现了数据压缩。

4 终结

4.1 压缩率效果

我这里简单测试了一下压缩效率(注意:压缩效率与压缩内容有密切关系,这里只是简单采用字符串举例,进行测试):

  • 1、使用Jackson2JsonRedisSerializer,测试数据长度:13.70 Kb
  • 2、使用RedisSerializerGzip压缩,测试数据长度:9.19 Kb
  • 3、使用RedisSerializerSnappy压缩,测试数据长度:13.37 Kb

可以看出,RedisSerializerGzip压缩率高,而RedisSerializerSnappy压缩率低,原因是Snappy追求的是压缩速度而不是压缩率。采用何种压缩,根据大家项目的情况自行定夺吧。

4.2 性能对比:

可以参考我以前的一篇文章:

  压缩格式gzip/snappy/lzo/bzip2 比较与总结:https://blog.csdn.net/zzhongcy/article/details/89375346

压缩格式 压缩比 压缩速率 解压速率
gzip 13.4% 21 MB/s 118 MB/s
lzo 20.5% 135 MB/s 410 MB/s
snappy 22.2% 172 MB/s 409 MB/s
bzip2 13.2% 2.4MB/s 9.5MB/s

是否压缩数据以及使用何种压缩格式对性能具有重要的影响

 

5 其他序列换

5.1 Fst 序列化

import org.nustaq.serialization.FSTConfiguration;
import org.springframework.data.redis.serializer.RedisSerializer;
import org.springframework.data.redis.serializer.SerializationException;

import javax.xml.crypto.Data;
import java.time.LocalDateTime;
import java.util.Date;

/**
 * Description: Fst 序列化
 */
public class FstSerializer implements RedisSerializer {

    private static FSTConfiguration configuration = FSTConfiguration.createStructConfiguration();
    private Class clazz;

    public FstSerializer(Class clazz) {
        super();
        this.clazz = clazz;
        configuration.registerClass(clazz);
    }

    @Override
    public byte[] serialize(T t) throws SerializationException {
        return configuration.asByteArray(t);
    }

    @Override
    public T deserialize(byte[] bytes) throws SerializationException {
        return (T) configuration.asObject(bytes);
    }
}

5.2 Kryo 序列化

import com.esotericsoftware.kryo.Kryo;
import com.esotericsoftware.kryo.io.ByteBufferInput;
import com.esotericsoftware.kryo.io.Input;
import com.esotericsoftware.kryo.io.Output;
import com.esotericsoftware.kryo.serializers.DefaultSerializers;
import com.esotericsoftware.kryo.serializers.JavaSerializer;
import com.esotericsoftware.kryo.util.Pool;
import de.javakaffee.kryoserializers.ArraysAsListSerializer;
import de.javakaffee.kryoserializers.BitSetSerializer;
import de.javakaffee.kryoserializers.GregorianCalendarSerializer;
import de.javakaffee.kryoserializers.JdkProxySerializer;
import de.javakaffee.kryoserializers.RegexSerializer;
import de.javakaffee.kryoserializers.SynchronizedCollectionsSerializer;
import de.javakaffee.kryoserializers.URISerializer;
import de.javakaffee.kryoserializers.UUIDSerializer;
import de.javakaffee.kryoserializers.UnmodifiableCollectionsSerializer;
import org.springframework.data.redis.serializer.RedisSerializer;
import org.springframework.data.redis.serializer.SerializationException;

import java.awt.print.Book;
import java.io.ByteArrayInputStream;
import java.lang.reflect.InvocationHandler;
import java.math.BigDecimal;
import java.math.BigInteger;
import java.net.URI;
import java.text.SimpleDateFormat;
import java.util.*;
import java.util.concurrent.ConcurrentHashMap;
import java.util.regex.Pattern;

/**
 * Description: Kryo 序列化.
*/ public class KryoSerializer implements RedisSerializer { private static final int BUFFER_SIZE = 2048; private static final byte[] EMPTY_BYTE_ARRAY = new byte[0]; private static Pool kryoPool = new Pool(true, false, 8) { @Override protected Kryo create() { Kryo kryo = new Kryo(); kryo.setRegistrationRequired(false); kryo.register(Book.class); kryo.addDefaultSerializer(Throwable.class, new JavaSerializer()); kryo.register(Arrays.asList("").getClass(), new ArraysAsListSerializer()); kryo.register(GregorianCalendar.class, new GregorianCalendarSerializer()); kryo.register(InvocationHandler.class, new JdkProxySerializer()); kryo.register(BigDecimal.class, new DefaultSerializers.BigDecimalSerializer()); kryo.register(BigInteger.class, new DefaultSerializers.BigIntegerSerializer()); kryo.register(Pattern.class, new RegexSerializer()); kryo.register(BitSet.class, new BitSetSerializer()); kryo.register(URI.class, new URISerializer()); kryo.register(UUID.class, new UUIDSerializer()); UnmodifiableCollectionsSerializer.registerSerializers(kryo); SynchronizedCollectionsSerializer.registerSerializers(kryo); kryo.register(HashMap.class); kryo.register(ArrayList.class); kryo.register(LinkedList.class); kryo.register(HashSet.class); kryo.register(TreeSet.class); kryo.register(Hashtable.class); kryo.register(Date.class); kryo.register(Calendar.class); kryo.register(ConcurrentHashMap.class); kryo.register(SimpleDateFormat.class); kryo.register(GregorianCalendar.class); kryo.register(Vector.class); kryo.register(BitSet.class); kryo.register(StringBuffer.class); kryo.register(StringBuilder.class); kryo.register(Object.class); kryo.register(Object[].class); kryo.register(String[].class); kryo.register(byte[].class); kryo.register(char[].class); kryo.register(int[].class); kryo.register(float[].class); kryo.register(double[].class); return kryo; } }; private static Pool outputPool = new Pool(true, false, 16) { @Override protected Output create() { return new Output(BUFFER_SIZE, -1); } }; private static Pool inputPool = new Pool(true, false, 16) { @Override protected Input create() { return new ByteBufferInput(BUFFER_SIZE); } }; private Class clazz; public KryoSerializer(Class clazz) { super(); this.clazz = clazz; } @Override public byte[] serialize(T t) throws SerializationException { if (null == t) { return EMPTY_BYTE_ARRAY; } Kryo kryo = null; Output output = null; byte[] bytes; try { output = outputPool.obtain(); kryo = kryoPool.obtain(); kryo.writeClassAndObject(output, t); output.flush(); return output.toBytes(); } finally { if (output != null) { outputPool.free(output); } if (kryo != null) { kryoPool.free(kryo); } } } @Override public T deserialize(byte[] bytes) throws SerializationException { if (null == bytes || bytes.length <= 0) { return null; } Kryo kryo = null; Input input = null; try { input = inputPool.obtain(); input.setInputStream(new ByteArrayInputStream(bytes)); kryo = kryoPool.obtain(); return (T) kryo.readClassAndObject(input); } finally { if (input != null) { inputPool.free(input); } if (kryo != null) { kryoPool.free(kryo); } } } }

 

6 参考

https://stackoverflow.com/questions/58829724/adding-compression-to-spring-data-redis-with-lettuceconnectionfactory

https://github.com/cboursinos/java-spring-redis-compression-snappy-kryo

https://ld246.com/article/1532328272348

https://gitee.com/SoftMeng/spring-boot-skill/tree/master/redis-serializer-line

你可能感兴趣的:(SpringBoot)