Xception: Deep Learning with Depthwise Separable Convolutions
论文链接:https://arxiv.org/pdf/1610.02357.pdf
PyTorch:https://github.com/shanglianlm0525/PyTorch-Networks
import torch
import torch.nn as nn
import torchvision
def ConvBN(in_channels,out_channels,kernel_size,stride):
return nn.Sequential(
nn.Conv2d(in_channels=in_channels,out_channels=out_channels,kernel_size=kernel_size,stride=stride,padding=0 if kernel_size==1 else (kernel_size-1)//2),
nn.BatchNorm2d(out_channels),
)
def ConvBNRelu(in_channels,out_channels,kernel_size,stride):
return nn.Sequential(
ConvBN(in_channels, out_channels, kernel_size, stride),
nn.ReLU6(inplace=True),
)
def SeparableConvolution(in_channels, out_channels):
return nn.Sequential(
nn.Conv2d(in_channels=in_channels, out_channels=in_channels, kernel_size=3, stride=1,padding=1,groups=in_channels),
nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0),
)
def SeparableConvolutionRelu(in_channels, out_channels):
return nn.Sequential(
SeparableConvolution(in_channels, out_channels),
nn.ReLU6(inplace=True),
)
def ReluSeparableConvolution(in_channels, out_channels):
return nn.Sequential(
nn.ReLU6(inplace=True),
SeparableConvolution(in_channels, out_channels)
)
class EntryBottleneck(nn.Module):
def __init__(self, in_channels, out_channels, first_relu=True):
super(EntryBottleneck, self).__init__()
mid_channels = out_channels
self.shortcut = ConvBN(in_channels=in_channels,out_channels=out_channels,kernel_size=1,stride=2)
self.bottleneck = nn.Sequential(
ReluSeparableConvolution(in_channels=in_channels,out_channels=mid_channels) if first_relu else SeparableConvolution(in_channels=in_channels,out_channels=mid_channels),
ReluSeparableConvolution(in_channels=mid_channels, out_channels=out_channels),
nn.MaxPool2d(kernel_size=3,stride=2,padding=1)
)
def forward(self, x):
out = self.shortcut(x)
x = self.bottleneck(x)
return out+x
class MiddleBottleneck(nn.Module):
def __init__(self, in_channels, out_channels):
super(MiddleBottleneck, self).__init__()
mid_channels = out_channels
self.bottleneck = nn.Sequential(
ReluSeparableConvolution(in_channels=in_channels,out_channels=mid_channels),
ReluSeparableConvolution(in_channels=mid_channels, out_channels=mid_channels),
ReluSeparableConvolution(in_channels=mid_channels, out_channels=out_channels),
)
def forward(self, x):
out = self.bottleneck(x)
return out+x
class ExitBottleneck(nn.Module):
def __init__(self, in_channels, out_channels):
super(ExitBottleneck, self).__init__()
mid_channels = in_channels
self.shortcut = ConvBN(in_channels=in_channels,out_channels=out_channels,kernel_size=1,stride=2)
self.bottleneck = nn.Sequential(
ReluSeparableConvolution(in_channels=in_channels,out_channels=mid_channels),
ReluSeparableConvolution(in_channels=mid_channels, out_channels=out_channels),
nn.MaxPool2d(kernel_size=3,stride=2,padding=1)
)
def forward(self, x):
out = self.shortcut(x)
x = self.bottleneck(x)
return out+x
class Xception(nn.Module):
def __init__(self, num_classes=1000):
super(Xception, self).__init__()
self.entryFlow = nn.Sequential(
ConvBNRelu(in_channels=3, out_channels=32, kernel_size=3, stride=2),
ConvBNRelu(in_channels=32, out_channels=64, kernel_size=3, stride=1),
EntryBottleneck(in_channels=64, out_channels=128, first_relu=False),
EntryBottleneck(in_channels=128, out_channels=256, first_relu=True),
EntryBottleneck(in_channels=256, out_channels=728, first_relu=True),
)
self.middleFlow = nn.Sequential(
MiddleBottleneck(in_channels=728,out_channels=728),
MiddleBottleneck(in_channels=728, out_channels=728),
MiddleBottleneck(in_channels=728, out_channels=728),
MiddleBottleneck(in_channels=728, out_channels=728),
MiddleBottleneck(in_channels=728, out_channels=728),
MiddleBottleneck(in_channels=728, out_channels=728),
MiddleBottleneck(in_channels=728, out_channels=728),
MiddleBottleneck(in_channels=728, out_channels=728),
)
self.exitFlow = nn.Sequential(
ExitBottleneck(in_channels=728, out_channels=1024),
SeparableConvolutionRelu(in_channels=1024, out_channels=1536),
SeparableConvolutionRelu(in_channels=1536, out_channels=2048),
nn.AdaptiveAvgPool2d((1,1)),
)
self.linear = nn.Linear(2048, num_classes)
def forward(self, x):
x = self.entryFlow(x)
x = self.middleFlow(x)
x = self.exitFlow(x)
x = x.view(x.size(0), -1)
out = self.linear(x)
return out
if __name__ == '__main__':
model = Xception()
print(model)
input = torch.randn(1,3,299,299)
output = model(input)
print(output.shape)