目标
尝试了一下把PageRank算法结合了文本相似度计算。直觉上是想把一个list里,和大家都比较靠拢的文本可能最后的PageRank值会比较大。因为如果最后计算的PageRank值大,说明有比较多的文本和他的相似度值比较高,或者有更多的文本向他靠拢。这样是不是就可以得到一些相对核心的文本,或者相对代表性的文本?如果是要在整堆文本里切分一些关键的词做token,那么每个token在每份文本里的权重就可以不一样,那么是否就可以得到比较核心的token,来给这些文本打标签?当然,分词切词的时候都是要用工具过滤掉stopword的。
我也只是想尝试一下这个想法,就简单实现了整个过程。可能实现上还有问题。我的结果是最后大家的PageRank值都非常接近。如:
- 5.626742067958352, 5.626742066427658, 5.626742070495978, 5.626742056768215, 5.626742079766638
5.626742067958352, 5.626742066427658, 5.626742070495978, 5.626742056768215, 5.626742079766638
选5,10,20,50都差不多。都非常接近。主要在设置PageRank定制迭代的那个DISTANCE值,值越接近0,迭代次数越多,经过很多次游走之后,文本之间的关系都很相近,各自的pagerank值相差不大。如果调成0.5这样的级别,可能迭代了4次左右就停下来了,互相之间差距会大一些。具体看自己的需求来控制这个距离参数了。
代码实现
文本之间的相似度计算用的是余弦距离,先哈希过。下面是计算两个List
- package dcd.academic.recommend;
- import java.util.ArrayList;
- import java.util.HashMap;
- import java.util.Iterator;
- import java.util.Map;
- import dcd.academic.util.StdOutUtil;
- public class CosineDis {
- public static double getSimilarity(ArrayList
doc1, ArrayList doc2) { - if (doc1 != null && doc1.size() > 0 && doc2 != null && doc2.size() > 0) {
- Map
int[]> AlgorithmMap = new HashMap int[]>(); - for (int i = 0; i < doc1.size(); i++) {
- String d1 = doc1.get(i);
- long sIndex = hashId(d1);
- int[] fq = AlgorithmMap.get(sIndex);
- if (fq != null) {
- fq[0]++;
- } else {
- fq = new int[2];
- fq[0] = 1;
- fq[1] = 0;
- AlgorithmMap.put(sIndex, fq);
- }
- }
- for (int i = 0; i < doc2.size(); i++) {
- String d2 = doc2.get(i);
- long sIndex = hashId(d2);
- int[] fq = AlgorithmMap.get(sIndex);
- if (fq != null) {
- fq[1]++;
- } else {
- fq = new int[2];
- fq[0] = 0;
- fq[1] = 1;
- AlgorithmMap.put(sIndex, fq);
- }
- }
- Iterator
iterator = AlgorithmMap.keySet().iterator(); - double sqdoc1 = 0;
- double sqdoc2 = 0;
- double denominator = 0;
- while (iterator.hasNext()) {
- int[] c = AlgorithmMap.get(iterator.next());
- denominator += c[0] * c[1];
- sqdoc1 += c[0] * c[0];
- sqdoc2 += c[1] * c[1];
- }
- return denominator / Math.sqrt(sqdoc1 * sqdoc2);
- } else {
- return 0;
- }
- }
- public static long hashId(String s) {
- long seed = 131; // 31 131 1313 13131 131313 etc.. BKDRHash
- long hash = 0;
- for (int i = 0; i < s.length(); i++) {
- hash = (hash * seed) + s.charAt(i);
- }
- return hash;
- }
- public static void main(String[] args) {
- ArrayList
t1 = new ArrayList(); - ArrayList
t2 = new ArrayList(); - t1.add("sa");
- t1.add("dfg");
- t1.add("df");
- t2.add("gfd");
- t2.add("sa");
- StdOutUtil.out(getSimilarity(t1, t2));
- }
- }
package dcd.academic.recommend;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import dcd.academic.util.StdOutUtil;
public class CosineDis {
public static double getSimilarity(ArrayList doc1, ArrayList doc2) {
if (doc1 != null && doc1.size() > 0 && doc2 != null && doc2.size() > 0) {
Map AlgorithmMap = new HashMap();
for (int i = 0; i < doc1.size(); i++) {
String d1 = doc1.get(i);
long sIndex = hashId(d1);
int[] fq = AlgorithmMap.get(sIndex);
if (fq != null) {
fq[0]++;
} else {
fq = new int[2];
fq[0] = 1;
fq[1] = 0;
AlgorithmMap.put(sIndex, fq);
}
}
for (int i = 0; i < doc2.size(); i++) {
String d2 = doc2.get(i);
long sIndex = hashId(d2);
int[] fq = AlgorithmMap.get(sIndex);
if (fq != null) {
fq[1]++;
} else {
fq = new int[2];
fq[0] = 0;
fq[1] = 1;
AlgorithmMap.put(sIndex, fq);
}
}
Iterator iterator = AlgorithmMap.keySet().iterator();
double sqdoc1 = 0;
double sqdoc2 = 0;
double denominator = 0;
while (iterator.hasNext()) {
int[] c = AlgorithmMap.get(iterator.next());
denominator += c[0] * c[1];
sqdoc1 += c[0] * c[0];
sqdoc2 += c[1] * c[1];
}
return denominator / Math.sqrt(sqdoc1 * sqdoc2);
} else {
return 0;
}
}
public static long hashId(String s) {
long seed = 131; // 31 131 1313 13131 131313 etc.. BKDRHash
long hash = 0;
for (int i = 0; i < s.length(); i++) {
hash = (hash * seed) + s.charAt(i);
}
return hash;
}
public static void main(String[] args) {
ArrayList t1 = new ArrayList();
ArrayList t2 = new ArrayList();
t1.add("sa");
t1.add("dfg");
t1.add("df");
t2.add("gfd");
t2.add("sa");
StdOutUtil.out(getSimilarity(t1, t2));
}
}
利用上面这个类,根据文本之间的相似度,为每份文本计算得到一个向量(最后要归一一下),用来初始化PageRank的起始矩阵。我用的数据是我solr里的论文标题+摘要的文本,我是通过SolrjHelper这个类去取得了一个List
- package dcd.academic.recommend;
- import java.io.IOException;
- import java.net.UnknownHostException;
- import java.util.ArrayList;
- import java.util.List;
- import dcd.academic.mongodb.MyMongoClient;
- import dcd.academic.solrj.SolrjHelper;
- import dcd.academic.util.StdOutUtil;
- import dcd.academic.util.StringUtil;
- import com.mongodb.BasicDBList;
- import com.mongodb.BasicDBObject;
- import com.mongodb.DBCollection;
- import com.mongodb.DBCursor;
- import com.mongodb.DBObject;
- public class BtwPublication {
- public static final int NUM = 20;
- public static void main(String[] args) throws IOException{
- BtwPublication bp = new BtwPublication();
- //bp.updatePublicationForComma();
- PageRank pageRank = new PageRank(bp.getPagerankS("random"));
- pageRank.doPagerank();
- }
- public double getDist(String pub1, String pub2) throws IOException {
- if (pub1 != null && pub2 != null) {
- ArrayList
doc1 = StringUtil.getTokens(pub1); - ArrayList
doc2 = StringUtil.getTokens(pub2); - return CosineDis.getSimilarity(doc1, doc2);
- } else {
- return 0;
- }
- }
- // public List
- //
- // }
- public List
- > getPagerankS(String text)
- SolrjHelper helper = new SolrjHelper(1);
- List
pubs = helper.getPubsByTitle(text, 0, NUM); - List
- > s =
- >();
- for (String pub : pubs) {
- List
tmp_row = new ArrayList(); - double total = 0.0;
- for (String other : pubs) {
- if (!pub.equals(other)) {
- double tmp = getDist(pub, other);
- tmp_row.add(tmp);
- total += tmp;
- } else {
- tmp_row.add(0.0);
- }
- }
- s.add(getNormalizedRow(tmp_row, total));
- }
- return s;
- }
- public List
getNormalizedRow(List double d) {row, - List
res = new ArrayList(); - for (int i = 0; i < row.size(); i ++) {
- res.add(row.get(i) / d);
- }
- StdOutUtil.out(res.toString());
- return res;
- }
- }
package dcd.academic.recommend;
import java.io.IOException;
import java.net.UnknownHostException;
import java.util.ArrayList;
import java.util.List;
import dcd.academic.mongodb.MyMongoClient;
import dcd.academic.solrj.SolrjHelper;
import dcd.academic.util.StdOutUtil;
import dcd.academic.util.StringUtil;
import com.mongodb.BasicDBList;
import com.mongodb.BasicDBObject;
import com.mongodb.DBCollection;
import com.mongodb.DBCursor;
import com.mongodb.DBObject;
public class BtwPublication {
public static final int NUM = 20;
public static void main(String[] args) throws IOException{
BtwPublication bp = new BtwPublication();
//bp.updatePublicationForComma();
PageRank pageRank = new PageRank(bp.getPagerankS("random"));
pageRank.doPagerank();
}
public double getDist(String pub1, String pub2) throws IOException {
if (pub1 != null && pub2 != null) {
ArrayList doc1 = StringUtil.getTokens(pub1);
ArrayList doc2 = StringUtil.getTokens(pub2);
return CosineDis.getSimilarity(doc1, doc2);
} else {
return 0;
}
}
// public List
最后这个是PageRank类,部分参数可以自己再设置:
- package dcd.academic.recommend;
- import java.util.ArrayList;
- import java.util.List;
- import java.util.Random;
- import dcd.academic.util.StdOutUtil;
- public class PageRank {
- private static final double ALPHA = 0.85;
- private static final double DISTANCE = 0.0000001;
- private static final double MUL = 10;
- public static int SIZE;
- public static List
- > s;
- PageRank(List
- > s) {
- this.SIZE = s.get(0).size();
- this.s = s;
- }
- public static void doPagerank() {
- List
q = new ArrayList(); - for (int i = 0; i < SIZE; i ++) {
- q.add(new Random().nextDouble()*MUL);
- }
- System.out.println("初始的向量q为:");
- printVec(q);
- System.out.println("初始的矩阵G为:");
- printMatrix(getG(ALPHA));
- List
pageRank = calPageRank(q, ALPHA); - System.out.println("PageRank为:");
- printVec(pageRank);
- System.out.println();
- }
- /**
- * 打印输出一个矩阵
- *
- * @param m
- */
- public static void printMatrix(List
- > m) {
- for (int i = 0; i < m.size(); i++) {
- for (int j = 0; j < m.get(i).size(); j++) {
- System.out.print(m.get(i).get(j) + ", ");
- }
- System.out.println();
- }
- }
- /**
- * 打印输出一个向量
- *
- * @param v
- */
- public static void printVec(List
v) { - for (int i = 0; i < v.size(); i++) {
- System.out.print(v.get(i) + ", ");
- }
- System.out.println();
- }
- /**
- * 获得一个初始的随机向量q
- *
- * @param n
- * 向量q的维数
- * @return 一个随机的向量q,每一维是0-5之间的随机数
- */
- public static List
getInitQ( int n) { - Random random = new Random();
- List
q = new ArrayList(); - for (int i = 0; i < n; i++) {
- q.add(new Double(5 * random.nextDouble()));
- }
- return q;
- }
- /**
- * 计算两个向量的距离
- *
- * @param q1
- * 第一个向量
- * @param q2
- * 第二个向量
- * @return 它们的距离
- */
- public static double calDistance(List
q1, List q2) { - double sum = 0;
- if (q1.size() != q2.size()) {
- return -1;
- }
- for (int i = 0; i < q1.size(); i++) {
- sum += Math.pow(q1.get(i).doubleValue() - q2.get(i).doubleValue(),
- 2);
- }
- return Math.sqrt(sum);
- }
- /**
- * 计算pagerank
- *
- * @param q1
- * 初始向量
- * @param a
- * alpha的值
- * @return pagerank的结果
- */
- public static List
calPageRank(List double a) {q1, - List
- > g = getG(a);
- List
q = null; - while (true) {
- q = vectorMulMatrix(g, q1);
- double dis = calDistance(q, q1);
- System.out.println(dis);
- if (dis <= DISTANCE) {
- System.out.println("q1:");
- printVec(q1);
- System.out.println("q:");
- printVec(q);
- break;
- }
- q1 = q;
- }
- return q;
- }
- /**
- * 计算获得初始的G矩阵
- *
- * @param a
- * 为alpha的值,0.85
- * @return 初始矩阵G
- */
- public static List
- > getG(
- List
- > aS = numberMulMatrix(s, a);
- List
- > nU = numberMulMatrix(getU(), (
- List
- > g = addMatrix(aS, nU);
- return g;
- }
- /**
- * 计算一个矩阵乘以一个向量
- *
- * @param m
- * 一个矩阵
- * @param v
- * 一个向量
- * @return 返回一个新的向量
- */
- public static List
vectorMulMatrix(List - > m,
- List
v) { - if (m == null || v == null || m.size() <= 0
- || m.get(0).size() != v.size()) {
- return null;
- }
- List
list = new ArrayList(); - for (int i = 0; i < m.size(); i++) {
- double sum = 0;
- for (int j = 0; j < m.get(i).size(); j++) {
- double temp = m.get(i).get(j).doubleValue()
- * v.get(j).doubleValue();
- sum += temp;
- }
- list.add(sum);
- }
- return list;
- }
- /**
- * 计算两个矩阵的和
- *
- * @param list1
- * 第一个矩阵
- * @param list2
- * 第二个矩阵
- * @return 两个矩阵的和
- */
- public static List
- > addMatrix(List
- > list1,
- List
- > list2) {
- List
- > list =
- >();
- if (list1.size() != list2.size() || list1.size() <= 0
- || list2.size() <= 0) {
- return null;
- }
- for (int i = 0; i < list1.size(); i++) {
- list.add(new ArrayList
()); - for (int j = 0; j < list1.get(i).size(); j++) {
- double temp = list1.get(i).get(j).doubleValue()
- + list2.get(i).get(j).doubleValue();
- list.get(i).add(new Double(temp));
- }
- }
- return list;
- }
- /**
- * 计算一个数乘以矩阵
- *
- * @param s
- * 矩阵s
- * @param a
- * double类型的数
- * @return 一个新的矩阵
- */
- public static List
- > numberMulMatrix(List
- > s,
- double a) {
- List
- > list =
- >();
- for (int i = 0; i < s.size(); i++) {
- list.add(new ArrayList
()); - for (int j = 0; j < s.get(i).size(); j++) {
- double temp = a * s.get(i).get(j).doubleValue();
- list.get(i).add(new Double(temp));
- }
- }
- return list;
- }
- /**
- * 初始化U矩阵,全1
- *
- * @return U
- */
- public static List
- > getU() {
- List
row = new ArrayList(); - for (int i = 0; i < SIZE; i ++) {
- row.add(new Double(1));
- }
- List
- > s =
- >();
- for (int j = 0; j < SIZE; j ++) {
- s.add(row);
- }
- return s;
- }
- }
package dcd.academic.recommend;
import java.util.ArrayList;
import java.util.List;
import java.util.Random;
import dcd.academic.util.StdOutUtil;
public class PageRank {
private static final double ALPHA = 0.85;
private static final double DISTANCE = 0.0000001;
private static final double MUL = 10;
public static int SIZE;
public static List> s;
PageRank(List> s) {
this.SIZE = s.get(0).size();
this.s = s;
}
public static void doPagerank() {
List q = new ArrayList();
for (int i = 0; i < SIZE; i ++) {
q.add(new Random().nextDouble()*MUL);
}
System.out.println("初始的向量q为:");
printVec(q);
System.out.println("初始的矩阵G为:");
printMatrix(getG(ALPHA));
List pageRank = calPageRank(q, ALPHA);
System.out.println("PageRank为:");
printVec(pageRank);
System.out.println();
}
/**
* 打印输出一个矩阵
*
* @param m
*/
public static void printMatrix(List> m) {
for (int i = 0; i < m.size(); i++) {
for (int j = 0; j < m.get(i).size(); j++) {
System.out.print(m.get(i).get(j) + ", ");
}
System.out.println();
}
}
/**
* 打印输出一个向量
*
* @param v
*/
public static void printVec(List v) {
for (int i = 0; i < v.size(); i++) {
System.out.print(v.get(i) + ", ");
}
System.out.println();
}
/**
* 获得一个初始的随机向量q
*
* @param n
* 向量q的维数
* @return 一个随机的向量q,每一维是0-5之间的随机数
*/
public static List getInitQ(int n) {
Random random = new Random();
List q = new ArrayList();
for (int i = 0; i < n; i++) {
q.add(new Double(5 * random.nextDouble()));
}
return q;
}
/**
* 计算两个向量的距离
*
* @param q1
* 第一个向量
* @param q2
* 第二个向量
* @return 它们的距离
*/
public static double calDistance(List q1, List q2) {
double sum = 0;
if (q1.size() != q2.size()) {
return -1;
}
for (int i = 0; i < q1.size(); i++) {
sum += Math.pow(q1.get(i).doubleValue() - q2.get(i).doubleValue(),
2);
}
return Math.sqrt(sum);
}
/**
* 计算pagerank
*
* @param q1
* 初始向量
* @param a
* alpha的值
* @return pagerank的结果
*/
public static List calPageRank(List q1, double a) {
List> g = getG(a);
List q = null;
while (true) {
q = vectorMulMatrix(g, q1);
double dis = calDistance(q, q1);
System.out.println(dis);
if (dis <= DISTANCE) {
System.out.println("q1:");
printVec(q1);
System.out.println("q:");
printVec(q);
break;
}
q1 = q;
}
return q;
}
/**
* 计算获得初始的G矩阵
*
* @param a
* 为alpha的值,0.85
* @return 初始矩阵G
*/
public static List> getG(double a) {
List> aS = numberMulMatrix(s, a);
List> nU = numberMulMatrix(getU(), (1 - a) / SIZE);
List> g = addMatrix(aS, nU);
return g;
}
/**
* 计算一个矩阵乘以一个向量
*
* @param m
* 一个矩阵
* @param v
* 一个向量
* @return 返回一个新的向量
*/
public static List vectorMulMatrix(List> m,
List v) {
if (m == null || v == null || m.size() <= 0
|| m.get(0).size() != v.size()) {
return null;
}
List list = new ArrayList();
for (int i = 0; i < m.size(); i++) {
double sum = 0;
for (int j = 0; j < m.get(i).size(); j++) {
double temp = m.get(i).get(j).doubleValue()
* v.get(j).doubleValue();
sum += temp;
}
list.add(sum);
}
return list;
}
/**
* 计算两个矩阵的和
*
* @param list1
* 第一个矩阵
* @param list2
* 第二个矩阵
* @return 两个矩阵的和
*/
public static List> addMatrix(List> list1,
List> list2) {
List> list = new ArrayList>();
if (list1.size() != list2.size() || list1.size() <= 0
|| list2.size() <= 0) {
return null;
}
for (int i = 0; i < list1.size(); i++) {
list.add(new ArrayList());
for (int j = 0; j < list1.get(i).size(); j++) {
double temp = list1.get(i).get(j).doubleValue()
+ list2.get(i).get(j).doubleValue();
list.get(i).add(new Double(temp));
}
}
return list;
}
/**
* 计算一个数乘以矩阵
*
* @param s
* 矩阵s
* @param a
* double类型的数
* @return 一个新的矩阵
*/
public static List> numberMulMatrix(List> s,
double a) {
List> list = new ArrayList>();
for (int i = 0; i < s.size(); i++) {
list.add(new ArrayList());
for (int j = 0; j < s.get(i).size(); j++) {
double temp = a * s.get(i).get(j).doubleValue();
list.get(i).add(new Double(temp));
}
}
return list;
}
/**
* 初始化U矩阵,全1
*
* @return U
*/
public static List> getU() {
List row = new ArrayList();
for (int i = 0; i < SIZE; i ++) {
row.add(new Double(1));
}
List> s = new ArrayList>();
for (int j = 0; j < SIZE; j ++) {
s.add(row);
}
return s;
}
}
下面是我一次实验结果的数据,我设置了五分文本,这样看起来比较短:
- [0.0, 0.09968643574761415, 0.2601130421632277, 0.31094706119099713, 0.32925346089816093]
- [0.1315115598803241, 0.0, 0.23650307622882252, 0.2827229880685279, 0.34926237582232544]
- [0.13521235055030142, 0.09318868159350341, 0.0, 0.3996835314966943, 0.3719154363595009]
- [0.1389453620825689, 0.0957614822411479, 0.34357346750710194, 0.0, 0.4217196881691813]
- [0.14612484353723476, 0.11749453142051332, 0.31752920814285096, 0.4188514168994011, 0.0]
- 初始的向量q为:
- 8.007763265073303, 3.1232982446687387, 1.1722525763669134, 5.906625842576609, 9.019220483814852,
- 初始的矩阵G为:
- 0.030000000000000006, 0.11473347038547205, 0.2510960858387436, 0.2943050020123476, 0.30986544176343683,
- 0.14178482589827548, 0.030000000000000006, 0.23102761479449913, 0.2703145398582487, 0.3268730194489766,
- 0.1449304979677562, 0.10921037935447789, 0.030000000000000006, 0.36973100177219015, 0.3461281209055758,
- 0.14810355777018358, 0.11139725990497573, 0.3220374473810367, 0.030000000000000006, 0.38846173494380415,
- 0.15420611700664955, 0.12987035170743633, 0.29989982692142336, 0.38602370436449096, 0.030000000000000006,
- 8.215210604296416
- 2.1786836521210637
- 0.6343362349619535
- 0.19024536572818584
- 0.05836227176176904
- 0.018354791916908083
- 0.0059297512567364945
- 0.0019669982458251243
- 6.679891158687752E-4
- 2.312017647733628E-4
- 8.117199104238135E-5
- 2.8787511843006215E-5
- 1.0279598478348542E-5
- 3.6872987746593366E-6
- 1.3264993458811192E-6
- 4.780938295685138E-7
- 1.7251588746973008E-7
- 6.229666266632005E-8
- q1:
- 5.62674207030434, 5.626742074589739, 5.626742063777632, 5.626742101012727, 5.626742037269133,
- q:
- 5.626742067958352, 5.626742066427658, 5.626742070495978, 5.626742056768215, 5.626742079766638,
- PageRank为:
- 5.626742067958352, 5.626742066427658, 5.626742070495978, 5.626742056768215, 5.626742079766638,
文章来源于:http://blog.csdn.net/eagleking012/article/details/7099694