This time, you are supposed to help us collect the data for family-owned property. Given each person’s family members, and the estate(房产)info under his/her own name, we need to know the size of each family, and the average area and number of sets of their real estate.
Input Specification:
Each input file contains one test case. For each case, the first line gives a positive integer N (≤1000). Then N lines follow, each gives the infomation of a person who owns estate in the format:
ID Father Mother k Child
1
⋯Child
k
M
estate
Area
where ID is a unique 4-digit identification number for each person; Father and Mother are the ID’s of this person’s parents (if a parent has passed away, -1 will be given instead); k (0≤k≤5) is the number of children of this person; Child
i
's are the ID’s of his/her children; M
estate
is the total number of sets of the real estate under his/her name; and Area is the total area of his/her estate.
Output Specification:
For each case, first print in a line the number of families (all the people that are related directly or indirectly are considered in the same family). Then output the family info in the format:
ID M AVG
sets
AVG
area
where ID is the smallest ID in the family; M is the total number of family members; AVG
sets
is the average number of sets of their real estate; and AVG
area
is the average area. The average numbers must be accurate up to 3 decimal places. The families must be given in descending order of their average areas, and in ascending order of the ID’s if there is a tie.
Sample Input:
10
6666 5551 5552 1 7777 1 100
1234 5678 9012 1 0002 2 300
8888 -1 -1 0 1 1000
2468 0001 0004 1 2222 1 500
7777 6666 -1 0 2 300
3721 -1 -1 1 2333 2 150
9012 -1 -1 3 1236 1235 1234 1 100
1235 5678 9012 0 1 50
2222 1236 2468 2 6661 6662 1 300
2333 -1 3721 3 6661 6662 6663 1 100
Sample Output:
3
8888 1 1.000 1000.000
0001 15 0.600 100.000
5551 4 0.750 100.000
1、用无向图来表示各个成员之间的关系(-1表示空节点,不加入图);2、结构体数组来存储每个点的点权(sets,area);3、DFS遍历整个图,连通块数即为家庭数,计算每个连通块的节点数(即成员数),点权之和,记录最小id;4、结构体数组ans[] 记录每个连通块的最小id,点数,平均sets,平均area;5、按输出要求对ans[]排序,然后顺序输出。
#include
#include
#include
#include
using namespace std;
const int INF=0x7fffffff;
const int MAXN=10000;
vector<int> G[MAXN],ids;//ids存所有节点id,以便遍历
bool vis[MAXN]={
false};
struct Node
{
double sets=0;
double area=0;
}node[MAXN];
//遍历连通块时需要记录的信息
double tot_sets=0,tot_area=0;
int memberNum=0;
int minId=INF;
struct Ans
{
int id;
int mN;
double ave_sets;
double ave_area;
}ans[1002];
bool cmp(Ans a,Ans b)
{
if(a.ave_area!=b.ave_area)
return a.ave_area>b.ave_area;
else
return a.id<b.id;
}
void DFS(int s)
{
vis[s]=true;
if(s<minId)
{
minId=s;
}
tot_sets+=node[s].sets;
tot_area+=node[s].area;
memberNum++;
for(int i=0;i<G[s].size();i++)
{
int child=G[s][i];
if(vis[child]==false)
{
DFS(child);
}
}
}
int main()
{
int n;
scanf("%d",&n);
for(int i=0;i<n;i++)
{
int id,fa,ma,k;
scanf("%d%d%d%d",&id,&fa,&ma,&k);
ids.push_back(id);
if(fa!=-1)
{
G[id].push_back(fa);
G[fa].push_back(id);
}
if(ma!=-1)
{
G[id].push_back(ma);
G[ma].push_back(id);
}
if(k>0)
{
for(int j=0;j<k;j++)
{
int child;
scanf("%d",&child);
G[id].push_back(child);
G[child].push_back(id);
}
}
scanf("%lf%lf",&node[id].sets,&node[id].area);
}
int ansNum=0;
for(int i=0;i<ids.size();i++)
{
int v=ids[i];
if(vis[v]==false)
{
DFS(v);
ans[ansNum].ave_sets=tot_sets/memberNum;
ans[ansNum].ave_area=tot_area/memberNum;
ans[ansNum].id=minId;
ans[ansNum].mN=memberNum;
ansNum++;
tot_area=0;tot_sets=0;
memberNum=0;
minId=INF;
}
}
sort(ans,ans+ansNum,cmp);
printf("%d\n",ansNum);
for(int i=0;i<ansNum;i++)
{
printf("%04d %d %.3f %.3f\n",ans[i].id,ans[i].mN,ans[i].ave_sets,ans[i].ave_area);
}
return 0;
}