- Fink与Hadoop的简介以及联系
Bugkillers
hadoop大数据分布式
Fink和Hadoop是两个常用于大数据处理的开源工具,它们可以搭配使用以构建高效的数据处理系统。一、Fink和Hadoop的关系Fink:1、Fink是一个分布式流处理框架,专注于实时数据处理。它支持高吞吐、低延迟的流处理,适用于实时分析、事件驱动应用等场景。2、Fink提供精确一次(exactly-once)语义,确保数据处理的准确性。Hadoop:1、Hadoop是一个分布式存储和批处理框架
- 6个大数据应用案例
雪兽软件
科技前沿大数据
根据市场数据预测报告,到2026年,全球大数据市场可能达到2684亿美元。随着大数据市场的快速增长,组织正在利用大数据来获得洞察力,帮助他们做出更好的决策,改善运营,最终推动最佳增长。从医疗保健到金融,从零售到电信,大数据正被用于改变行业的运作方式,使企业能够创造新的收入来源,增强客户体验,提高运营效率。这个全面的博客将探索令人兴奋的大数据用例领域,探索商业组织如何利用数据获得洞察力,推动创新,并
- Spark 和 Flink
信徒_
sparkflink大数据
Spark和Flink都是目前流行的大数据处理引擎,但它们在架构设计、应用场景、性能和生态方面有较大区别。以下是详细对比:1.架构与核心概念方面ApacheSparkApacheFlink计算模型微批(Micro-Batch)为主,但支持结构化流(StructuredStreaming)原生流(TrueStreaming),基于事件驱动处理方式以RDD、DataFrame/Dataset作为核心抽
- 集群与分片:深入理解及应用实践
一休哥助手
架构系统架构
目录引言什么是集群?集群的定义集群的类型什么是分片?分片的定义分片的类型集群与分片的关系集群的应用场景负载均衡高可用性分片的应用场景大数据处理数据库分片集群与分片的架构设计系统架构设计数据存储设计案例分析Hadoop集群Elasticsearch分片性能优化策略集群性能优化分片性能优化挑战和解决方案总结参考资料引言在现代计算系统中,处理大规模数据和提高系统的可靠性已经成为了基础需求。集群和分片是两
- 探索数据云的无缝桥梁:Apache Spark 与 Snowflake 的完美结合
窦育培
探索数据云的无缝桥梁:ApacheSpark与Snowflake的完美结合spark-snowflakeSnowflakeDataSourceforApacheSpark.项目地址:https://gitcode.com/gh_mirrors/sp/spark-snowflake项目介绍在大数据处理的浩瀚宇宙中,Snowflake以其独特的云数据仓库能力闪耀,而ApacheSpark则是数据分析和
- Java与Python的集成与性能对比研究
向哆哆
Java入门到精通javapython开发语言
Java与Python的集成与性能对比研究随着科技的不断进步,Java和Python这两种编程语言在不同领域得到了广泛应用。Java凭借其高性能、平台独立性和庞大的生态系统,广泛应用于企业级应用、Web开发和大数据处理等领域。而Python因其简洁易学、灵活性强,在数据科学、人工智能和快速原型开发方面具有显著优势。虽然这两种语言在设计上有很大的差异,但它们可以通过多种方式进行集成,结合各自的优势,
- 深入理解Hadoop 1.0.0源码架构及组件实现
隔壁王医生
本文还有配套的精品资源,点击获取简介:Hadoop1.0.0作为大数据处理的开源框架,在业界有广泛应用。该版本包含核心分布式文件系统HDFS、MapReduce计算模型、Common工具库等关键组件。通过分析源码,可深入理解这些组件的设计和实现细节,包括数据复制、任务调度、容错机制以及系统配置管理。本课程旨在指导学生和开发者深入学习Hadoop的核心原理和实践应用,为其在大数据领域的进一步研究和开
- 如何在Java中实现高效的分布式计算框架:从Hadoop到Spark
省赚客app开发者
javahadoopspark
如何在Java中实现高效的分布式计算框架:从Hadoop到Spark大家好,我是微赚淘客系统3.0的小编,是个冬天不穿秋裤,天冷也要风度的程序猿!今天我们来探讨如何在Java中实现高效的分布式计算框架,重点介绍Hadoop和Spark这两个在大数据处理领域中广泛使用的技术。一、Hadoop:基础分布式计算框架Hadoop是一个开源的分布式计算框架,最早由Apache开发,旨在处理海量数据。它的核心
- HiveQL命令(三)- Hive函数
BigDataMagician
HiveQL命令hivehadoop数据仓库
文章目录前言一、Hive内置函数1.数值函数2.字符串函数3.日期与时间函数4.条件函数5.聚合函数6.集合函数7.类型转换函数8.表生成函数(UDTF)前言在大数据处理和分析的过程中,数据的转换和处理是至关重要的环节。ApacheHive作为一种流行的数据仓库工具,提供了丰富的内置函数,帮助用户高效地处理和分析存储在Hadoop分布式文件系统(HDFS)中的数据。这些内置函数涵盖了数值计算、字符
- Scala语言的循环实现
赵旖琅
包罗万象golang开发语言后端
Scala语言中的循环实现Scala是一种现代编程语言,它结合了面向对象和函数式编程的特点,广泛应用于大数据处理、分布式计算和Web开发等领域。循环是程序设计中不可或缺的一部分,在Scala中也有多种方式来实现循环。这篇文章将深入探讨Scala中的循环实现,包括基本的循环结构、函数式循环、递归以及一些最佳实践。1.基本的循环结构在Scala中,最基本的循环结构是for循环和while循环。虽然Sc
- 初识Flink
四维大脑
Flinkflink
Flink是什么Flink是Apache基金会旗下的一个开源大数据处理框架。目前,Flink已经成为各大公司大数据实时处理的发力重点,特别是国内以阿里为代表的一众互联网大厂都在全力投入,为Flink社区贡献了大量源码。如今Flink已被很多人认为是大数据实时处理的方向和未来,许多公司也都在招聘和储备掌握Flink技术的人才。Flink的主要应用场景,就是处理大规模的数据流。那为什么一定要用Flin
- 在Jupyter Notebook中进行大数据分析:集成Apache Spark
范范0825
jupyter数据分析apache
在JupyterNotebook中进行大数据分析:集成ApacheSpark介绍JupyterNotebook是一款广泛使用的数据科学工具,结合ApacheSpark后,能够处理和分析大规模数据。ApacheSpark是一个快速的统一分析引擎,支持大数据处理和分布式计算。本教程将详细介绍如何在JupyterNotebook中集成和使用Spark进行大数据分析。前提条件基本的Python编程知识基本
- 一文带你了解Spark4新特性,开启大数据处理新篇章
敏叔V587
大数据
一文带你了解Spark4新特性,开启大数据处理新篇章在大数据处理的广袤天地中,ApacheSpark始终是熠熠生辉的存在,宛如一颗璀璨的明星框架,吸引着无数开发者与数据分析师的目光。技术的车轮滚滚向前,Spark4.0在万众瞩目中荣耀登场,携带着一系列令人热血沸腾的新特性,如同为大数据领域开启了一扇通往新世界的大门,带来了前所未有的变革。今天,就让我们一同踏上这场探索之旅,深入剖析Spark4.0
- 当大模型遇上Spark:解锁大数据处理新姿势
敏叔V587
spark大数据分布式
大模型与Spark:技术初印象在当今数字化浪潮中,大模型和Spark无疑是备受瞩目的两大技术。它们各自在人工智能和大数据处理领域大放异彩,而当这两者相遇,又会碰撞出怎样的火花呢?让我们先来分别认识一下大模型和Spark。大模型,即大规模机器学习模型,是利用海量数据和强大算力训练出来的“大参数”模型。其发展历程可谓是一部科技创新的传奇史。从20世纪中叶人工智能概念的提出,到2006年深度学习技术崭露
- Scala语言的安全开发
萧月霖
包罗万象golang开发语言后端
Scala语言的安全开发引言在现代软件开发中,安全性是一个不可忽视的重要因素。特别是在处理敏感数据和用户信息时,确保代码的安全性尤为重要。Scala语言以其强大的功能和灵活性,在大数据处理和并发编程中受到了广泛的关注与应用。然而,Scala虽然在设计上考虑了类型安全和并发编程的特性,但程序员在开发中仍需要注意各种安全问题,以防止潜在的安全漏洞。本文将深入探讨在Scala语言开发中如何实现安全性保障
- 探秘高效大数据处理:揭秘开源项目【BigData】
温宝沫Morgan
探秘高效大数据处理:揭秘开源项目【BigData】databaseBlazegraphHighPerformanceGraphDatabase项目地址:https://gitcode.com/gh_mirrors/dat/database1、项目介绍在如今的数字化时代,数据已成为企业的重要资产。对于海量数据的处理和分析,我们常常需要依赖强大的工具来支撑。这就是我们要向您推荐的开源项目——BigDa
- 大数据:一种收集、分析和使用数据的文化
程序猿广坤
大数据编程语言it资讯人工智能程序员编程语言大数据
真正的问题不是在于技术,而是在于过程。与所有IT投资一样,大数据成功的关键在于迭代,而不是关于Hadoop、NoSQL、Splunk或者任何特定的供应商或技术。Gartner发现,虽然64%的企业正在投资于大数据,但约60%不知道如何进行大数据处理。真正的问题不是在于技术,而是在于过程。与所有IT投资一样,大数据成功的关键在于迭代,而不是关于Hadoop、NoSQL、Splunk或者任何特定的供应
- Kafka应用场景
串一串cc
序在学习一门新技术之前,我们需要先去了解一下这门技术的具体应用场景,使用它能够做什么,能够达到什么目的,学习kafka的初衷是用作消息队列;但是还可以使用KafkaStream进行一些实时的流计算,多用于大数据处理;也可以做日志收集汇总、网站活动跟踪等任务。消息队列kafka可以很好的替代一些传统的消息系统,kafka具有更好的吞吐量,内置的分区使kafka具有更好的容错和伸缩性,这些特性使它可以
- 大数据(一)MaxCompute
胖当当技术
架构云计算odps学习大数据
一、引言作者后面会使用MaxCompute,所以在进行学习研究,总会有一些疑问产生,这里讲讲作者的疑问和思路二、介绍MaxCompute(原名ODPS-OpenDataProcessingService)是阿里云提供的大数据处理平台,专门用于批量数据存储和大规模并行计算。它广泛应用于数据分析和处理任务,为企业级数据处理提供高效的解决方案。下面是MaxCompute的一些主要功能和应用场景:大规模数
- 基于Java的智能家居设计:探讨Java在智能家居大数据处理中的角色
杭州大厂Java程序媛
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
基于Java的智能家居设计:探讨Java在智能家居大数据处理中的角色关键词:智能家居,Java,大数据处理,机器学习,物联网1.背景介绍1.1问题由来随着物联网技术的发展,智能家居已经从一个概念转变为现实。通过连接各种家庭设备,智能家居系统能够实现自动化控制、远程监控、个性化服务等功能。然而,这些功能背后隐藏着一个庞大的数据处理和管理系统,即大数据处理系统。这些系统需要高效、可靠的计算平台,而Ja
- 22章2节:如何在 R Markdown 和 R Notebook 中创建使用
DAT|R科学
用R探索医药数据科学r语言开发语言
RMarkdown是一种广泛使用的工具,可以帮助数据科学家、统计学家和研究人员创建动态和交互式的报告。它结合了R语言的强大数据处理和分析能力,以及Markdown的简洁易用的文本格式,使得创建专业和美观的报告变得更加简单和高效。同时,RNotebook是一种交互式文档格式,它将叙述性文本、数据可视化以及其他多媒体组件与用R语言编写的代码结合在一起。RNotebook使用户能够创建和分享包含数据分析
- TDengine 做为 FLINK 数据源技术参考手册
TDengine (老段)
tdengineflink大数据涛思数据时序数据库数据库
ApacheFlink是一款由Apache软件基金会支持的开源分布式流批一体化处理框架,可用于流处理、批处理、复杂事件处理、实时数据仓库构建及为机器学习提供实时数据支持等诸多大数据处理场景。与此同时,Flink拥有丰富的连接器与各类工具,可对接众多不同类型的数据源实现数据的读取与写入。在数据处理的过程中,Flink还提供了一系列可靠的容错机制,有力保障任务即便遭遇意外状况,依然能稳定、持续运行。借
- 使用Flink进行流式图处理
AI天才研究院
大数据AI人工智能AI大模型企业级应用开发实战计算计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
使用Flink进行流式图处理1.背景介绍1.1大数据时代的到来随着互联网、物联网和移动互联网的快速发展,数据呈现出爆炸式增长。根据IDC的预测,到2025年,全球数据量将达到175ZB。传统的批处理系统已经无法满足对实时数据处理的需求。因此,流式计算应运而生,成为大数据处理的重要组成部分。1.2流式计算的概念流式计算是一种新兴的数据处理范式,它能够持续不断地处理来自各种数据源的数据流。与传统的批处
- python 分布式集群_Python搭建Spark分布式集群环境
小国阁下
python分布式集群
前言ApacheSpark是一个新兴的大数据处理通用引擎,提供了分布式的内存抽象。Spark最大的特点就是快,可比HadoopMapReduce的处理速度快100倍。本文没有使用一台电脑上构建多个虚拟机的方法来模拟集群,而是使用三台电脑来搭建一个小型分布式集群环境安装。本教程采用Spark2.0以上版本(比如Spark2.0.2、Spark2.1.0等)搭建集群,同样适用于搭建Spark1.6.2
- 史上最强!Spring Boot 3.3 高效批量插入万级数据的多种方案
m0_74825074
面试学习路线阿里巴巴springboot后端java
SpringBoot3.3多种方式实现高效批量插入万级数据,史上最强!在大数据处理场景下,如何高效地将大量数据插入数据库是一个重要课题。本文基于SpringBoot3.3及MyBatis-Plus,介绍几种高效的批量插入数据的方法,包括:使用JDBC批处理使用自定义SQL批处理单条插入(for循环)拼接SQL语句插入MyBatis-Plus的saveBatch方法循环插入+开启批处理模式每种方式都
- 2024第五届全球数字经济产业大会:前沿技术引领未来
javascript
随着数字化浪潮的不断推进,全球数字经济产业大会已成为展示最新技术成果和探讨未来发展趋势的重要平台。2024年8月,第五届全球数字经济产业大会在深圳会展中心盛大召开,汇聚了全球顶尖的科技企业和行业领袖,共同探讨和展示数字经济领域的最新技术成果与发展趋势。云计算与大数据云计算和大数据技术作为数字经济的基石,一直是大会的焦点。本届大会上,众多企业展示了他们在云计算平台的创新和大数据应用方面的最新进展。通
- 赛事 Q&A × 培训预告:2024 年(第 17 届)中国大学生计算机设计大赛大数据主题赛正式开赛!
ModelWhale
中国大学生计算机设计大赛大数据人工智能编程竞赛
中国大学生计算机设计大赛(下简称“大赛”)是由教育部认证、我国面向高校本科生最早的赛事之一,自2008年开赛起,至今已是第十七届。大赛属于全国普通高校大学生竞赛排行榜榜单赛事,始终贯彻“以赛促学、以赛促教、以赛促创”,为国家培养全面发展的创新型、复合型、应用型人才。大赛下设不同领域的十一个大类,和鲸科技自2021年起,连续四年作为大数据应用大类中大数据主题赛的协办方倾力配合大赛组委会与各承办单位,
- 推荐开源项目:WeDataSphere - 智慧数据服务平台
劳泉文Luna
推荐开源项目:WeDataSphere-智慧数据服务平台去发现同类优质开源项目:https://gitcode.com/是一款由微众银行金融科技团队开发的开源大数据处理和应用框架,旨在简化数据分析流程,提高数据驱动决策的效率。该项目将复杂的数据集成、治理、分析和应用任务封装为模块化服务,让用户可以更加专注于业务逻辑,而非底层数据处理的技术细节。技术解析模块化设计:WeDataSphere提供了一套
- Redis学习笔记
csdn_bobo_6
redis学习数据库
认识NoSQLNoSQL,泛指非关系型的数据库。随着互联网web2.0网站的兴起,传统的关系数据库在处理web2.0网站,特别是超大规模和高并发的SNS类型的web2.0纯动态网站已经显得力不从心,出现了很多难以克服的问题,而非关系型的数据库则由于其本身的特点得到了非常迅速的发展。NoSQL数据库的产生就是为了解决大规模数据集合多重数据种类带来的挑战,特别是大数据应用难题。NoSQL特点方便扩展(
- Command Center AI
由数入道
应急管理人工智能机器学习智能体
CommandCenterAI是一种先进的智能决策支持系统,专门用于应急指挥和资源调度管理,尤其在高压、复杂的环境中,如自然灾害应对、军事指挥、城市公共安全等领域,帮助决策者做出快速、有效的响应。它集成了大数据处理、实时情报分析、优化调度、决策模拟等功能,为指挥官提供多维度的决策支持。1.CommandCenterAI的核心功能1.1实时数据整合与情报分析CommandCenterAI需要从多个数
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input 
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟