A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:
Given the structure of a binary tree and a sequence of distinct integer keys, there is only one way to fill these keys into the tree so that the resulting tree satisfies the definition of a BST. You are supposed to output the level order traversal sequence of that tree. The sample is illustrated by Figure 1 and 2.
Each input file contains one test case. For each case, the first line gives a positive integer N (≤100) which is the total number of nodes in the tree. The next N lines each contains the left and the right children of a node in the format left_index right_index
, provided that the nodes are numbered from 0 to N-1, and 0 is always the root. If one child is missing, then -1 will represent the NULL child pointer. Finally N distinct integer keys are given in the last line.
For each test case, print in one line the level order traversal sequence of that tree. All the numbers must be separated by a space, with no extra space at the end of the line.
9
1 6
2 3
-1 -1
-1 4
5 -1
-1 -1
7 -1
-1 8
-1 -1
73 45 11 58 82 25 67 38 42
58 25 82 11 38 67 45 73 42
设计思路:
1. 构建binary search tree(BST)
2. 将节点的value存储在一个数组中,并将其从小到大排序
3. 将数组中的value插入BST中去
4. levelorder遍历输出
突破点:
1. 在构建BST时,要知道第i次(从0开始记)输入的两个值正是BST中标号为i的node的左右
2. 在将value插入BST中去的时候,只需要将中序遍历时的visit操作改为将数值插入node即可,简单点来讲,就是将数
组从小到大排好以后,与中序遍历BST时的节点一一对应起来
代码如下:
/**********************************************************
* Author : XiaoXiong
* Email : [email protected]
* Create time : 2016-10-28 18:14
* Last modified : 2016-10-28 18:14
* Filename : 5.2.c
* Description :
* *******************************************************/
#include
#include
#include
typedef struct node *tree;
struct node{
int value;
tree left;
tree right;
};
int *val;
int k=0;
void sort(int *val, int n);
void levelOrder(tree T,int n);
void insertValue(tree T);
int main()
{
int n;
int i;
int l, r;
tree T;
scanf("%d", &n);
getchar();
T = (tree)malloc(sizeof(struct node)*n);
val = (int *)malloc(sizeof(int)*n);
if(n==0)
return 1;
/***根据输入的index值构建树****/
for(i = 0; i < n; i++){
scanf("%d %d", &l, &r);
getchar();
if(l != -1){
T[i].left = T+l;
}
else{
T[i].left = NULL;
}
if(r != -1){
T[i].right = T+r;
}
else{
T[i].right = NULL;
}
}
for(i = 0; i < n; i++){
scanf("%d", &val[i]);
getchar();
}
sort(val,n);
insertValue(T);
levelOrder(T,n);
return 0;
}
/**********将数值插入到树中************/
void insertValue(tree T)
{
if(T){
insertValue(T->left);
T->value=val[k];
k++;
insertValue(T->right);
}
return ;
}
/*************层次遍历**************/
void levelOrder(tree T, int n)
{
int i=0,t=1;
tree* queue;
queue = (tree *)malloc(sizeof(tree)*n);
if(T){
queue[0]=T;
}
for(i=0;ivalue);
}
else{
printf(" %d", queue[i]->value);
}
if(queue[i] -> left){
queue[t++] = queue[i]->left;
}
if(queue[i] -> right){
queue[t++] = queue[i]->right;
}
}
}
/***将整型数组从小到打排列***/
void sort(int *val, int n)
{
int i=0,j=0;
int tmp;
int min;
for(i=0;i