【Redis】NoSQL简介

文章目录

    • 1. 简介
    • 2. 分类
    • 3. 特点:
    • 4. 适用场景
    • 5. ACID
    • 6. CAP理论:
    • 7. BASE
    • 8. 思考题:

1. 简介

NoSQL最常见的解释是“non-relational”, “Not Only SQL”。泛指非关系型的数据库。它们不保证关系数据的ACID特性。
NoSQL一词最早出现于1998年,是Carlo Strozzi开发的一个轻量、开源、不提供SQL功能的关系数据库。2009年,Last.fm的Johan Oskarsson发起了一次关于分布式开源数据库的讨论,来自Rackspace的Eric Evans再次提出了NoSQL的概念,这时的NoSQL主要指非关系型、分布式、不提供ACID的数据库设计模式。2009年在亚特兰大举行的"no:sql(east)“讨论会是一个里程碑,其口号是"select fun, profit from real_world where relational=false;”。因此,对NoSQL最普遍的解释是"非关联型的",强调Key-Value Stores和文档数据库的优点,而不是单纯的反对RDBMS。

2. 分类

【Redis】NoSQL简介_第1张图片

3. 特点:

易扩展
NoSQL共同的特点都是去掉关系数据库的关系型特性。数据之间无关系,这样就非常容易扩展。无形之间,在架构的层面上带来了可扩展的能力。
大数据量,高性能
NoSQL数据库都具有非常高的读写性能,尤其在大数据量下,同样表现优秀。这得益于它的无关系性,数据库的结构简单。
灵活的数据模型
NoSQL无须事先为要存储的数据建立字段,随时可以存储自定义的数据格式。而在关系数据库里,增删字段是一件非常麻烦的事情。如果是非常大数据量的表,增加字段简直就是噩梦。这点在大数据量的Web 2.0时代尤其明显。
高可用
NoSQL在不太影响性能的情况,就可以方便地实现高可用的架构。比如通过复制模型也能实现高可用。

4. 适用场景

数据模型比较简单;
需要灵活性更强的IT系统;
对数据库性能要求较高;
不需要高度的数据一致性;
对于给定key,比较容易映射复杂值的环境。

5. ACID

NoSQL最终一致性,而非ACID属性
A (Atomicity) 原子性
原子性很容易理解,也就是说事务里的所有操作要么全部做完,要么都不做,事务成功的条件是事务里的所有操作都成功,只要有一个操作失败,整个事务就失败,需要回滚。
比如银行转账,从A账户转100元至B账户,分为两个步骤:1)从A账户取100元;2)存入100元至B账户。这两步要么一起完成,要么一起不完成,如果只完成第一步,第二步失败,钱会莫名其妙少了100元。
2、C (Consistency) 一致性
一致性也比较容易理解,也就是说数据库要一直处于一致的状态,事务的运行不会改变数据库原本的一致性约束。
例如现有完整性约束a+b=10,如果一个事务改变了a,那么必须得改变b,使得事务结束后依然满足a+b=10,否则事务失败。
3、I (Isolation) 独立性
所谓的独立性是指并发的事务之间不会互相影响,如果一个事务要访问的数据正在被另外一个事务修改,只要另外一个事务未提交,它所访问的数据就不受未提交事务的影响。
比如现在有个交易是从A账户转100元至B账户,在这个交易还未完成的情况下,如果此时B查询自己的账户,是看不到新增加的100元的。
4、D (Durability) 持久性
持久性是指一旦事务提交后,它所做的修改将会永久的保存在数据库上,即使出现宕机也不会丢失。

6. CAP理论:

分布式数据库中的CAP原理 【Redis】NoSQL简介_第2张图片

一致性(C):在分布式系统中的所有数据备份,在同一时刻是否同样的值。(等同于所有节点访问同一份最新的数据副本)
可用性(A):在集群中一部分节点故障后,集群整体是否还能响应客户端的读写请求。(对数据更新具备高可用性)
分区容忍性(P):以实际效果而言,分区相当于对通信的时限要求。系统如果不能在时限内达成数据一致性,就意味着发生了分区的情况,必须就当前操作在C和A之间做出选择。

CAP原则的精髓就是要么AP,要么CP,要么AC,但是不存在CAP。如果在某个分布式系统中数据无副本, 那么系统必然满足强一致性条件, 因为只有独一数据,不会出现数据不一致的情况,此时C和P两要素具备,但是如果系统发生了网络分区状况或者宕机,必然导致某些数据不可以访问,此时可用性条件就不能被满足,即在此情况下获得了CP系统,但是CAP不可同时满足。

11.11场景,AP,保证部分功能可用(基本可用性)

7. BASE

BASE是Basically Available(基本可用)、Soft state(软状态)和Eventually consistent(最终一致性)三个短语的简写。
BASE是对CAP中一致性和可用性权衡的结果,其来源于对大规模互联网系统分布式实践的结论,是基于CAP定理逐步演化而来的,其核心思想是即使无法做到强一致性(Strong consistency),但每个应用都可以根据自身的业务特点,采用适当的方式来使系统达到最终一致性(Eventual consistency)。
基本可用:
响应时间上的损失:正常情况下,一个在线搜索引擎需要0.5秒内返回给用户相应的查询结果,但由于出现异常(比如系统部分机房发生断电或断网故障),查询结果的响应时间增加到了1~2秒。
功能上的损失:正常情况下,在一个电子商务网站上进行购物,消费者几乎能够顺利地完成每一笔订单,但是在一些节日大促购物高峰的时候,由于消费者的购物行为激增,为了保护购物系统的稳定性,部分消费者可能会被引导到一个降级页面。
弱状态:也称为软状态,和硬状态相对,是指允许系统中的数据存在中间状态,并认为该中间状态的存在不会影响系统的整体可用性,即允许系统在不同节点的数据副本之间进行数据同步的过程存在延时。
最终一致性:强调的是系统中所有的数据副本,在经过一段时间的同步后,最终能够达到一个一致的状态。因此,最终一致性的本质是需要系统保证最终数据能够达到一致,而不需要实时保证系统数据的强一致性。

【Redis】NoSQL简介_第3张图片

8. 思考题:

  1. 比较RDBMS 和NoSQL 数据库,说明他们的应用场景
    NoSQL适用于网状结构,比如明星推送消息给粉丝
    参考资料

  2. 什么是CAP,举例说明CP和AP为什么不能同时满足?
    上边有

  3. 解释ACID
    事务特性上边有

  4. 解释BASE
    上边有详解

  5. NoSQL数据库的分类
    上边有分类图

  6. Ngnx+Tomcat集群+Redis怎么实现session共享
    【Redis】NoSQL简介_第4张图片

粘性session:通过Ngnx一直指定同一个tomcat
广播:将当前节点的信息告知其他节点
session共享:redis统一记录

你可能感兴趣的:(#,Redis)