Codeforces Round #228 (Div. 1) B. Fox and Minimal path (构造&最短路)

B. Fox and Minimal path

time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

Fox Ciel wants to write a task for a programming contest. The task is: "You are given a simple undirected graph with n vertexes. Each its edge has unit length. You should calculate the number of shortest paths between vertex 1 and vertex 2."

Same with some writers, she wants to make an example with some certain output: for example, her birthday or the number of her boyfriend. Can you help her to make a test case with answer equal exactly to k?

Input

The first line contains a single integer k (1 ≤ k ≤ 109).

Output

You should output a graph G with n vertexes (2 ≤ n ≤ 1000). There must be exactly k shortest paths between vertex 1 and vertex 2 of the graph.

The first line must contain an integer n. Then adjacency matrix G with n rows and n columns must follow. Each element of the matrix must be 'N' or 'Y'. If Gij is 'Y', then graph G has a edge connecting vertex i and vertex j. Consider the graph vertexes are numbered from 1 to n.

The graph must be undirected and simple: Gii = 'N' and Gij = Gji must hold. And there must be at least one path between vertex 1 and vertex 2. It's guaranteed that the answer exists. If there multiple correct answers, you can output any of them.

Examples

input

Copy

2

output

Copy

4
NNYY
NNYY
YYNN
YYNN

input

Copy

9

output

Copy

8
NNYYYNNN
NNNNNYYY
YNNNNYYY
YNNNNYYY
YNNNNYYY
NYYYYNNN
NYYYYNNN
NYYYYNNN

input

Copy

1

output

Copy

2
NY
YN

Note

In first example, there are 2 shortest paths: 1-3-2 and 1-4-2.

In second example, there are 9 shortest paths: 1-3-6-2, 1-3-7-2, 1-3-8-2, 1-4-6-2, 1-4-7-2, 1-4-8-2, 1-5-6-2, 1-5-7-2, 1-5-8-2.

题目大意:

输入一个数K,构造一个无向图从1到2有K条最短路,且总点数不超过1000.

解法:

容易知道任意一个数都可以被二进制构造出来,将K拆分成若干个二进制位后,每个二次幂条最短路都可以这样表示:

Codeforces Round #228 (Div. 1) B. Fox and Minimal path (构造&最短路)_第1张图片

图为K=4的情况,这样每增加一个环,答案就*2,如果这张图的K=6的话,只要从相应二进制位的点往外加一条路径到终点就可以了,像这样:

Codeforces Round #228 (Div. 1) B. Fox and Minimal path (构造&最短路)_第2张图片

最短路的长度就等于最大拆分二进制位*2,剩下的二进制位,长度不够直接加点就好啦。

Accepted code

#pragma GCC optimize(3)
#include
#include
using namespace std;

#define sc scanf
#define Min(x, y) x = min(x, y)
#define Max(x, y) x = max(x, y)
#define ALL(x) (x).begin(),(x).end()
#define SZ(x) ((int)(x).size())
#define pir pair 
#define MK(x, y) make_pair(x, y)
#define MEM(x, b) memset(x, b, sizeof(x))
#define MPY(x, b) memcpy(x, b, sizeof(x))
#define lowbit(x) ((x) & -(x))
#define P2(x) ((x) * (x))

typedef long long ll;
const int Mod = 1e9 + 7;
const int N = 1e3 + 100;
const int INF = 0x3f3f3f3f;
const ll LINF = 0x3f3f3f3f3f3f3f3f;
inline ll dpow(ll a, ll b){ ll r = 1, t = a; while (b){ if (b & 1)r = (r*t) % Mod; b >>= 1; t = (t*t) % Mod; }return r; }
inline ll fpow(ll a, ll b){ ll r = 1, t = a; while (b){ if (b & 1)r = (r*t); b >>= 1; t = (t*t); }return r; }

vector  ver;
int bit[30];    // 记录相应二进制位的点编号
bool G[N][N];
void Add(int u, int v) {
	G[u][v] = G[v][u] = true;
}

int main()
{
	int k;
	cin >> k;
	if (k == 1) {
		puts("2"), puts("NY"), puts("YN");
		exit(0);
	}
	else if (k == 2) {
		puts("4");
		puts("NNYY"), puts("NNYY");
		puts("YYNN"), puts("YYNN");
		exit(0);
	}
	else if (k == 3) {
		puts("5");
		puts("NNYYY"), puts("NNYYY");
		puts("YYNNN"), puts("YYNNN");
		puts("YYNNN"), exit(0);
	}    // 特判一些不好处理的情况

	int pos = 0;   // 拆分二进制位
	while (k) {
		if (k & 1)
			ver.push_back(pos);
		k >>= 1;
		pos++;
	}

	int len = ver.back();
	int cnt = 2;


	int u = cnt;   // 初始化最长的
	for (int i = 1; i <= len; i++) {
		if (i == 1) {
			bit[i - 1] = 1;     
			Add(1, ++cnt), Add(1, ++cnt);
			cnt++;
			Add(cnt - 1, cnt), Add(cnt - 2, cnt);
			u = cnt;
		}
		else if (i == len) {
			bit[i - 1] = u;
			Add(u, ++cnt), Add(u, ++cnt);
			Add(cnt - 1, 2), Add(cnt, 2);
		}
		else {
			bit[i - 1] = u;
			Add(u, ++cnt), Add(u, ++cnt);
			cnt++;
			Add(cnt - 1, cnt), Add(cnt - 2, cnt);
			u = cnt;
		}
	}

	for (int i = 0; i < SZ(ver) - 1; i++) { // 最长以外的二进制位
		int u = bit[ver[i]];   // 点编号
		int lst = 2 * (len - ver[i]);

		for (int j = 1; j <= lst; j++) {   // 添加的点数
			if (j == lst)
				Add(u, 2);
			else
				Add(u, ++cnt), u = cnt;
		}
	}
	cout << cnt << endl;
	for (int i = 1; i <= cnt; i++) {
		for (int j = 1; j <= cnt; j++) {
			if (G[i][j])
				printf("Y");
			else
				printf("N");
		}
		puts("");
	}
	
	return 0;  // 改数组大小!!!用pair记得改宏定义!!!
}

 

你可能感兴趣的:(图论,Codeforces,构造)