本章对“公平锁”的获取锁机制进行介绍(本文的公平锁指的是互斥锁的公平锁),内容包括:
本章,我们会讲解“线程获取公平锁”的原理;在讲解之前,需要了解几个基本概念。后面的内容,都是基于这些概念的;这些概念可能比较枯燥,但从这些概念中,能窥见“java锁”的一些架构,这对我们了解锁是有帮助的。
AQS
是java中管理“锁”的抽象类,锁的许多公共方法都是在这个类中实现。AQS
是独占锁(例如,ReentrantLock)和共享锁(例如,Semaphore)的公共父类。
(01) 独占锁 – 锁在一个时间点只能被一个线程锁占有。根据锁的获取机制,它又划分为“公平锁”和“非公平锁”。公平锁,是按照通过CLH等待线程按照先来先得的规则,公平的获取锁;而非公平锁,则当线程要获取锁时,它会无视CLH等待队列而直接获取锁。独占锁的典型实例子是ReentrantLock
,此外,ReentrantReadWriteLock.WriteLock
也是独占锁。
(02) 共享锁 – 能被多个线程同时拥有,能被共享的锁。JUC包中的ReentrantReadWriteLock.ReadLock
,CyclicBarrier
,CountDownLatch
和Semaphore
都是共享锁。这些锁的用途和原理,在以后的章节再详细介绍。
CLH
队列是AQS
中“等待锁”的线程队列。在多线程中,为了保护竞争资源不被多个线程同时操作而发生错误,我们常常需要通过锁来保护这些资源。在独占锁中,竞争资源在一个时间点只能被一个线程锁访问;而其它线程则需要等待。CLH
就是管理这些“等待锁”的线程的队列。
CLH是一个非阻塞的 FIFO 队列
。也就是说往里面插入或移除一个节点的时候,在并发条件下不会阻塞,而是通过自旋锁
和 CAS
保证节点插入和移除的原子性。
CAS
函数,是比较并交换函数,它是原子操作函数;即,通过CAS
操作的数据都是以原子方式进行的。例如,compareAndSetHead()
, compareAndSetTail()
, compareAndSetNext()
等函数。它们共同的特点是,这些函数所执行的动作是以原子的方式进行的。
本章是围绕“公平锁”如何获取锁而层次展开。“公平锁”涉及到的知识点比较多,但总的来说,不是特别难;如果读者能读懂AQS
和ReentrantLock.java
这两个类的大致意思,理解锁的原理和机制也就不成问题了。本章只是作者本人对锁的一点点理解,希望这部分知识能帮助您了解“公平锁”的获取过程,认识“锁”的框架。
ReentrantLock的UML类图
从图中可以看出:
下面给出Java1.7.0_40版本中,ReentrantLock和AQS的源码,仅供参考!
通过前面“Java多线程系列–“JUC锁”02之 互斥锁ReentrantLock”的“示例1”,我们知道,获取锁是通过lock()
函数。下面,我们以lock()
对获取公平锁的过程进行展开。
1、lock()
lock()
在 ReentrantLock.java 的FairSync
类中实现,它的源码如下:
final void lock() {
acquire(1);
}
说明:“当前线程”实际上是通过acquire(1)
获取锁的。
这里说明一下“1”的含义,它是设置“锁的状态”的参数。对于“独占锁”而言,锁处于可获取状态时,它的状态值是0;锁被线程初次获取到了,它的状态值就变成了1。
由于ReentrantLock
(公平锁/非公平锁)是可重入锁,所以“独占锁”可以被单个线程多此获取,每获取1次就将锁的状态+1。也就是说,初次获取锁时,通过acquire(1)
将锁的状态值设为1;再次获取锁时,将锁的状态值设为2;依次类推…这就是为什么获取锁时,传入的参数是1的原因了。
可重入就是指锁可以被单个线程多次获取。
2、acquire()
acquire()
在AQS
中实现的,它的源码如下:
public final void acquire(int arg) {
if (!tryAcquire(arg) && acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
}
tryAcquire()
尝试获取锁。获取成功的话,直接返回;尝试失败的话,进入到等待队列排序等待(前面可能还有线程在等待该锁);addWaiter(Node.EXCLUSIVE)
来将“当前线程”加入到”CLH队列(非阻塞的FIFO队列)”末尾。CLH队列就是线程等待队列;addWaiter(Node.EXCLUSIVE)
之后,会调用acquireQueued()
来获取锁。由于此时ReentrantLock
是公平锁,它会根据公平性原则来获取锁;acquireQueued()
时,会进入到CLH队列中休眠等待,直到获取锁了才返回!如果“当前线程”在休眠等待过程中被中断过,acquireQueued会返回true,此时”当前线程”会调用selfInterrupt()
来自己给自己产生一个中断。至于为什么要自己给自己产生一个中断,后面再介绍。上面是对acquire()
的概括性说明。下面,我们将该函数分为4部分来逐步解析。
公平锁的tryAcquire()
在ReentrantLock.java的FairSync
类中实现,源码如下:
protected final boolean tryAcquire(int acquires) {
// 获取“当前线程”
final Thread current = Thread.currentThread();
// 获取“独占锁”的状态
int c = getState();
// c=0意味着“锁没有被任何线程所拥有”,
if (c == 0) {
// 若“锁没有被任何线程所拥有”,
// 则判断“当前线程”是不是CLH队列中的第一个线程,
// 若是的话,则获取该锁,设置锁的状态,并且设置锁的拥有者为“当前线程”。
if (!hasQueuedPredecessors() &&
compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) {
// 如果“独占锁”的拥有者已经为“当前线程”,
// 则将更新锁的状态。
int nextc = c + acquires;
if (nextc < 0)
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}
说明:根据代码,我们可以分析出,tryAcquire()
的作用就是尝试去获取锁。注意,这里只是尝试!尝试成功的话,返回true;尝试失败的话,返回false,后续再通过其它办法来获取该锁。后面我们会说明,在尝试失败的情况下,是如何一步步获取锁的。
hasQueuedPredecessors()
在AQS
中实现,源码如下:
public final boolean hasQueuedPredecessors() {
Node t = tail;
Node h = head;
Node s;
return h != t &&
((s = h.next) == null || s.thread != Thread.currentThread());
}
说明: 通过代码,能分析出,hasQueuedPredecessors() 是通过判断”当前线程”是不是在CLH队列的队首,来返回AQS中是不是有比“当前线程”等待更久的线程。下面对head、tail和Node进行说明。
Node
就是CLH队列的节点。Node
在AQS
中实现,它的数据结构如下:
private transient volatile Node head; // CLH队列的队首
private transient volatile Node tail; // CLH队列的队尾
// CLH队列的节点
static final class Node {
static final Node SHARED = new Node();
static final Node EXCLUSIVE = null;
// 线程已被取消,对应的waitStatus的值
static final int CANCELLED = 1;
// “当前线程的后继线程需要被unpark(唤醒)”,对应的waitStatus的值。
// 一般发生情况是:当前线程的后继线程处于阻塞状态,而当前线程被release或cancel掉,因此需要唤醒当前线程的后继线程。
static final int SIGNAL = -1;
// 线程(处在Condition休眠状态)在等待Condition唤醒,对应的waitStatus的值
static final int CONDITION = -2;
// (共享锁)其它线程获取到“共享锁”,对应的waitStatus的值
static final int PROPAGATE = -3;
// waitStatus为“CANCELLED, SIGNAL, CONDITION, PROPAGATE”时分别表示不同状态,
// 若waitStatus=0,则意味着当前线程不属于上面的任何一种状态。
volatile int waitStatus;
// 前一节点
volatile Node prev;
// 后一节点
volatile Node next;
// 节点所对应的线程
volatile Thread thread;
// nextWaiter是“区别当前CLH队列是 ‘独占锁’队列 还是 ‘共享锁’队列的标记”
// 若nextWaiter=SHARED,则CLH队列是“共享锁”队列;
// 若nextWaiter=EXCLUSIVE,(即nextWaiter=null),则CLH队列是“独占锁”队列。
Node nextWaiter;
// “共享锁”则返回true,“独占锁”则返回false。
final boolean isShared() {
return nextWaiter == SHARED;
}
// 返回前一节点
final Node predecessor() throws NullPointerException {
Node p = prev;
if (p == null)
throw new NullPointerException();
else
return p;
}
Node() { // Used to establish initial head or SHARED marker
}
// 构造函数。thread是节点所对应的线程,mode是用来表示thread的锁是“独占锁”还是“共享锁”。
Node(Thread thread, Node mode) { // Used by addWaiter
this.nextWaiter = mode;
this.thread = thread;
}
// 构造函数。thread是节点所对应的线程,waitStatus是线程的等待状态。
Node(Thread thread, int waitStatus) { // Used by Condition
this.waitStatus = waitStatus;
this.thread = thread;
}
}
说明:
Node是CLH队列的节点,代表“等待锁的线程队列”。
compareAndSetState()
在AQS
中实现。它的源码如下:
protected final boolean compareAndSetState(int expect, int update) {
return unsafe.compareAndSwapInt(this, stateOffset, expect, update);
}
说明: compareAndSwapInt()
是sun.misc.Unsafe
类中的一个native
(本地)方法。对此,我们需要了解的是 compareAndSetState(expect, update)
是以原子的方式操作当前线程;若当前线程的状态为 expect,则设置它的状态为 update。
setExclusiveOwnerThread()
在AbstractOwnableSynchronizer.java中实现,它的源码如下:
// exclusiveOwnerThread是当前拥有“独占锁”的线程
private transient Thread exclusiveOwnerThread;
protected final void setExclusiveOwnerThread(Thread t) {
exclusiveOwnerThread = t;
}
说明:setExclusiveOwnerThread()
的作用就是,设置线程t为当前拥有“独占锁”的线程。
getState()
和setState()
都在AQS
中实现,源码如下:
// 锁的状态
private volatile int state;
// 设置锁的状态
protected final void setState(int newState) {
state = newState;
}
// 获取锁的状态
protected final int getState() {
return state;
}
说明:state表示锁的状态,对于“独占锁”而已,state=0 表示锁是可获取状态(即,锁没有被任何线程锁持有)。由于java中的独占锁是可重入的,state的值可以>1。
小结:
tryAcquire()
的作用就是让“当前线程”尝试获取锁。获取成功返回true,失败则返回false。
addWaiter(Node.EXCLUSIVE)
的作用是,创建“当前线程”的Node节点,且Node中记录“当前线程”对应的锁是“独占锁”类型,并且将该节点添加到CLH队列的末尾。
addWaiter()
在AQS
中实现,源码如下:
private Node addWaiter(Node mode) {
// 新建一个Node节点,节点对应的线程是“当前线程”,“当前线程”的锁的模型是mode。
Node node = new Node(Thread.currentThread(), mode);
Node pred = tail;
// 若CLH队列不为空,则将“当前线程”添加到CLH队列末尾
if (pred != null) {
node.prev = pred;
if (compareAndSetTail(pred, node)) {
pred.next = node;
return node;
}
}
// 若CLH队列为空,则调用enq()新建CLH队列,然后再将“当前线程”添加到CLH队列中。
enq(node);
return node;
}
说明:对于“公平锁”而言,addWaiter(Node.EXCLUSIVE)
会首先创建一个Node节点,节点的类型是“独占锁”(Node.EXCLUSIVE)类型。然后,再将该节点添加到CLH队列的末尾。
compareAndSetTail()
在AQS
中实现,源码如下:
private final boolean compareAndSetTail(Node expect, Node update) {
return unsafe.compareAndSwapObject(this, tailOffset, expect, update);
}
说明:compareAndSetTail
也属于CAS
函数,也是通过“native(本地)方法”实现的。compareAndSetTail(expect, update)
会以原子的方式进行操作,它的作用是判断CLH队列的队尾是不是为expect,是的话,就将队尾设为update。
enq()
在AQS
中实现,源码如下:
private Node enq(final Node node) {
for (;;) {
Node t = tail;
if (t == null) { // Must initialize
if (compareAndSetHead(new Node()))
tail = head;
} else {
node.prev = t;
if (compareAndSetTail(t, node)) {
t.next = node;
return t;
}
}
}
}
说明: enq()
的作用很简单。如果CLH队列为空,则新建一个CLH表头;然后将node添加到CLH末尾。否则,直接将node添加到CLH末尾。
小结:
addWaiter()
的作用,就是将当前线程添加到CLH队列中。这就意味着将当前线程添加到等待获取“锁”的等待线程队列中了。
前面,我们已经将当前线程添加到CLH队列中了。而acquireQueued()
的作用就是逐步的去执行CLH队列的线程,如果当前线程获取到了锁,则返回;否则,当前线程进行休眠,直到唤醒并重新获取锁了才返回。下面,我们看acquireQueued()
的具体流程。
acquireQueued()
在AQS
中实现,源码如下:
final boolean acquireQueued(final Node node, int arg) {
boolean failed = true;
try {
// interrupted表示在CLH队列的调度中,“当前线程”在休眠时,有没有被中断过。
boolean interrupted = false;
for (;;) {
// 获取上一个节点。
// node是“当前线程”对应的节点,这里就意味着“获取上一个等待锁的线程”。
final Node p = node.predecessor();
if (p == head && tryAcquire(arg)) {
setHead(node);
p.next = null; // help GC
failed = false;
return interrupted;
}
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
interrupted = true;
}
} finally {
if (failed)
cancelAcquire(node);
}
}
说明:acquireQueued()
的目的是从队列中获取锁。
shouldParkAfterFailedAcquire()
在AQS
中实现,源码如下:
// 返回“当前线程是否应该阻塞”
private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
// 前继节点的状态
int ws = pred.waitStatus;
// 如果前继节点是SIGNAL状态,则意味这当前线程需要被unpark唤醒。此时,返回true。
if (ws == Node.SIGNAL)
return true;
// 如果前继节点是“取消”状态,则设置 “当前节点”的 “当前 前继节点” 为 “‘原前继节点’的前继节点”。
if (ws > 0) {
do {
node.prev = pred = pred.prev;
} while (pred.waitStatus > 0);
pred.next = node;
} else {
// 如果前继节点为“0”或者“共享锁”状态,则设置前继节点为SIGNAL状态。
compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
}
return false;
}
说明:
(01) 关于waitStatus
请参考下表(中扩号内为waitStatus的值),更多关于waitStatus的内容,可以参考前面的Node类的介绍。
(02) shouldParkAfterFailedAcquire()
通过以下规则,判断“当前线程”是否需要被阻塞。
如果“规则1”发生,即“前继节点是SIGNAL”状态,则意味着“当前线程”需要被阻塞。接下来会调用parkAndCheckInterrupt()
阻塞当前线程,直到当前线程被唤醒才从parkAndCheckInterrupt()
中返回。
parkAndCheckInterrupt()
在AQS
中实现,源码如下:
private final boolean parkAndCheckInterrupt() {
// 通过LockSupport的park()阻塞“当前线程”。
LockSupport.park(this);
// 返回线程的中断状态。
return Thread.interrupted();
}
说明:parkAndCheckInterrupt()
的作用是阻塞当前线程,并且返回“线程被唤醒之后”的中断状态。
它会先通过LockSupport.park()
阻塞“当前线程”,然后通过Thread.interrupted()
返回线程的中断状态。
这里介绍一下线程被阻塞之后如何唤醒。一般有2种情况:
unpark()
唤醒。“前继节点对应的线程”使用完锁之后,通过unpark()
方式唤醒当前线程。interrupt()
中断当前线程。补充:
LockSupport()
中的park()
,unpark()
的作用 和Object
中的wait()
,notify()
作用类似,是阻塞/唤醒。它们的用法不同,park()
,unpark()
是轻量级的,而wait()
,notify()
是必须先通过Synchronized
获取同步锁。关于LockSupport,我们会在之后的章节再专门进行介绍!
了解了shouldParkAfterFailedAcquire()
和parkAndCheckInterrupt()
函数之后。我们接着分析acquireQueued()
的for循环部分。
final Node p = node.predecessor();
if (p == head && tryAcquire(arg)) {
setHead(node);
p.next = null; // help GC
failed = false;
return interrupted;
}
说明:
(01) 通过node.predecessor()
获取前继节点。predecessor()
就是返回node的前继节点,若对此有疑惑可以查看下面关于Node类的介绍。
(02) p == head && tryAcquire(arg):首先,判断“前继节点”是不是CHL表头。如果是的话,则通过tryAcquire()
尝试获取锁。其实,这样做的目的是为了“让当前线程获取锁”,但是为什么需要先判断p==head呢?理解这个对理解“公平锁”的机制很重要,因为这么做的原因就是为了保证公平性!
shouldParkAfterFailedAcquire()
我们判断“当前线程”是否需要阻塞;parkAndCheckInterrupt()
来阻塞线程。当线程被解除阻塞的时候,我们会返回线程的中断状态。而线程被解除阻塞,可能是由于“线程被中断”,也可能是由于“其它线程调用了该线程的unpark()
函数”。p==head
这里。如果当前线程是因为其它线程调用了unpark()
函数而被唤醒,那么唤醒它的线程,应该是它的前继节点所对应的线程(关于这一点,后面在“释放锁”的过程中会看到)。OK,是前继节点调用unpark()
唤醒了当前线程!此时,再来理解p==head
就很简单了:当前继节点是CLH队列的头节点,并且它释放锁之后;就轮到当前节点获取锁了。然后,当前节点通过tryAcquire()
获取锁;获取成功的话,通过setHead(node)
设置当前节点为头节点,并返回。
总之,如果“前继节点调用unpark()
唤醒了当前线程”并且“前继节点是CLH表头”,此时就是满足p==head
,也就是符合公平性原则的。否则,如果当前线程是因为“线程被中断”而唤醒,那么显然就不是公平了。这就是为什么说p==head
就是保证公平性!
小结:
acquireQueued()
的作用就是“当前线程”会根据公平性原则进行阻塞等待,直到获取锁为止;并且返回当前线程在等待过程中有没有并中断过。
selfInterrupt()
是AQS
中实现,源码如下:
private static void selfInterrupt() {
Thread.currentThread().interrupt();
}
说明:selfInterrupt()
的代码很简单,就是“当前线程”自己产生一个中断。但是,为什么需要这么做呢?
这必须结合acquireQueued()
进行分析。如果在acquireQueued()
中,当前线程被中断过,则执行selfInterrupt()
;否则不会执行。
在acquireQueued()
中,即使是线程在阻塞状态被中断唤醒而获取到cpu执行权利;但是,如果该线程的前面还有其它等待锁的线程,根据公平性原则,该线程依然无法获取到锁。它会再次阻塞! 该线程再次阻塞,直到该线程被它的前面等待锁的线程锁唤醒;线程才会获取锁,然后“真正执行起来”!
也就是说,在该线程“成功获取锁并真正执行起来”之前,它的中断会被忽略并且中断标记会被清除! 因为在parkAndCheckInterrupt()
中,设置我们线程的中断状态时调用了Thread.interrupted()
。该函数不同于Thread的isInterrupted()
函数,isInterrupted()
仅仅返回中断状态,而interrupted()
在返回当前中断状态之后,还会清除中断状态。 正因为之前的中断状态被清除了,所以这里需要调用selfInterrupt()
重新产生一个中断!
小结:
selfInterrupt()
的作用就是当前线程自己产生一个中断。
再回过头看看acquire()
函数,它最终的目的是获取锁!
public final void acquire(int arg) {
if (!tryAcquire(arg) &&
acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
}
(01) 先是通过tryAcquire()
尝试获取锁。获取成功的话,直接返回;尝试失败的话,再通过acquireQueued()
获取锁。
(02) 尝试失败的情况下,会先通过addWaiter()
来将“当前线程”加入到”CLH队列”末尾;然后调用acquireQueued()
,在CLH队列中排序等待获取锁,在此过程中,线程处于休眠状态。直到获取锁了才返回。 如果在休眠等待过程中被中断过,则调用selfInterrupt()
来自己产生一个中断。
来源:http://www.cnblogs.com/skywang12345/p/3496147.html