稀疏矩阵顺序存储的运算方法

这里说说稀疏矩阵用三元组顺序存储的的运算方法:
首先是三元组的数据结构类型:

const int maxn= 100;

typedef struct{
    int i,j;//矩阵行标,列标
    int e;//元素值
}Triple;

typedef struct{
    Triple date[maxn +1];//非零三元组表
    int mu;//行数
    int nu;//列数
    int tu;//非零元数
}RLSMatrix;

先说说乘法的思想,两矩阵可以做乘法的前提是a[n][m]*b[j][k]
  1. m=j;
  2. a.tu*b.tu!=0;
=>if(a.nu== b.mu && a.tu*b.tu!=0){...}
  然后a矩阵的第i行与b矩阵的第j列相乘作为新矩阵的第i,元;
//nump[i]记录矩阵p第i行非零元的个数prpos[i]记录矩阵p第i行第一个非零元在三元组中的位置
//numq[i]记录矩阵q第i行非零元的个数qrpos[i]记录矩阵q第i行第一个非零元在三元组中的位置
RLSMatrix Multiplication(RLSMatrix &p,RLSMatrix &q){
    if(p.nu==q.mu && 0!=p.tu*q.tu){
        RLSMatrix v;
        v.mu=p.mu;
        v.nu=q.nu;
        v.tu=1;

        //初始化
        int nump[maxn+1];
        int numq[maxn+1];
        int pqtemp[maxn+1];
        int prpos[maxn+1];
        int qrpos[maxn+1];
        memset(nump,0,sizeof(nump));
        memset(numq,0,sizeof(numq));

        for(int g=1;g<=p.tu;g++)//p 每一行非零元的个数;
                nump[p.date[g].i]+=1;
        for(int f=1;f<=q.tu;f++)//q 每一行非零元的个数;
            numq[q.date[f].i]+=1;
        for(int k=0;k<=q.tu+1;k++)//q 每行非零元地址设为0
            qrpos[k]=0;
        for(int h=0;h<=p.tu+1;h++)//p 每行非零元地址设为0
            prpos[h]=0;

        prpos[1]=1;
        qrpos[1]=1;
        for(int l=2;l<=q.mu+1;l++)//p每行非零元地址
            prpos[l]=prpos[l-1]+nump[l-1];
        for(int t=2;t<=q.mu+1;t++)//q 每行非零元地址
            qrpos[t]=qrpos[t-1]+numq[t-1];

        for(int arow=1;arow<=p.mu;arow++){
            int a=prpos[arow];
            int b=prpos[arow+1];
            memset(pqtemp,0,sizeof(pqtemp));
           //a的第i行与b的第i行对应相乘,得到的值按b对应的列标一一存在pqtemp中
            for(int tt=a;tt

稀疏矩阵的转置
//cpot[i]第i列的第一个非零元的位置
//num[i]第i列非零元的个数
RLSMatrix TransposeSmatrix(RLSMatrix &M){
//矩阵为非空
    if(M.tu){
        RLSMatrix p;
        //转置后矩阵的行值为原矩阵的列值,非零元个数不变
        p.tu=M.tu;
        p.nu=M.mu;
        p.mu=M.nu;
        //辅助数组,num[i]第i列非零元个数
        //cpot[i]第i列的第一个非零元的位置
        int num[maxn+1];
        int cpot[maxn+1];
        memset(num,0,sizeof(num));
        memset(cpot,0,sizeof(cpot));

        //num[i]和cpot[i]的初始化
        for(int i=1;i<=M.tu;i++)
            num[M.date[i].j]++;
        cpot[1]=1;
        for(int i=2;i<=M.nu;i++)
            cpot[i]=cpot[i-1]+num[i-1];

        //逐个读取原矩阵,进行转置变化
        for(int k=1;k<=M.tu;k++){
            int f=M.date[k].j;
            int t=cpot[f];
            p.date[t].i=M.date[k].j;
            p.date[t].j=M.date[k].i;
            p.date[t].e=M.date[k].e;
            cpot[f]++;
        }//for
            return p;
    }//if
}

稀疏矩阵的加法
RLSMatrix Add(RLSMatrix &p, RLSMatrix &q){
    if(p.nu==q.nu && p.mu==q.mu){
        RLSMatrix v;
        int f=1,t=1,temp=1;
        v.nu=p.nu;
        v.mu=p.mu;
        v.tu=0;
        while(f<=p.tu && t<=q.tu){
            if(p.date[f].i==q.date[t].i && p.date[f].j==q.date[f].j){
                if(0!=(p.date[f].e+q.date[f].e)){
                    v.date[temp].i=p.date[f].i;
                    v.date[temp].j=p.date[f].j;
                    v.date[temp].e=p.date[f].e+q.date[f].e;
                    temp++;v.tu++;
                    //cout<q.date[t].i) || (p.date[f].i==q.date[t].i && p.date[f].j>q.date[t].j) ){
                    v.date[temp].i=q.date[t].i;
                    v.date[temp].j=q.date[t].j;
                    v.date[temp].e=q.date[t].e;
                    temp++;
                    t++;v.tu++;//cout<


你可能感兴趣的:(c/c++,图论,图像处理)