- 凯里10家正规亲子鉴定机构中心地址一览(凯里附2024最新鉴定攻略)
鼎律基因刘主任
亲子鉴定主要是根据一个人的血型,以及除血型以外的纯遗传性状的遗传规律。遗传性状是由位于细胞核染色体上的基因控制的,个体特征是通过基因在父母和子代之间的传递来遗传的。基因的传递遵循一定的规律。后代的基因来自父母,一半来自父亲,一半来自母亲。进行亲子鉴定的另一个必要条件是,被鉴定人同意鉴定。一方面民事诉讼法不能强制不愿鉴定的当事人进行亲子鉴定,另一方面诉讼一方当事人无义务协助对方获得不利于自己的证据,
- 10-1 商业摄影的第一性原理
efe183ad77c6
1商业广告摄影的定义:用于制作商业图片的摄影技术。商业图片是指用做商业用途或具备二次商业用途特征的影像。——严冬而广告的本质就是吸引受众的注意力。人的注意力有两个特点,第一是有意识的时候,注意力就会有,而且随时产生随时花掉;第二是,自动筛选常见、不重要的信息。2我在说我们成年人应该怎么学习的时候,我总结了3个步骤:1寻找知识边界,并建立模型;2针对模型,刻意练习;3刻意反思。第一步寻找系统边界,也
- MATLAB在工业缺陷检测中的应用
本文还有配套的精品资源,点击获取简介:缺陷检测、伤痕检测、瑕疵检测和划痕检测是工业自动化和质量控制中至关重要的环节,MATLAB作为一种高级编程环境,在图像处理和计算机视觉任务中扮演了重要角色。本文详细介绍了如何使用MATLAB实现这些检测过程,包括图像采集、预处理、特征提取和决策制定等步骤。通过介绍内置图像处理工具箱中的应用,色彩转换技术、边缘检测算法以及形态学操作等方法,我们阐述了如何识别和处
- Orange3实战教程:图像分析---图像嵌入
err2008
Orange3实战教程数据挖掘神经网络自然语言处理机器学习计算机视觉深度学习orange3中文版
图像嵌入通过深度神经网络实现图像嵌入。输入图像:图像列表。输出嵌入向量:用数字向量表示的图像。跳过的图像:未计算嵌入向量的图像列表。图像嵌入功能读取图像并将其上传至远程服务器或本地计算。深度学习模型用于为每张图像计算特征向量。该功能返回一个增强的数据表,包含额外的列(图像描述符)。图像可以通过导入图像小部件导入,也可以通过电子表格中的图像路径导入。在这种情况下,包含图像路径的列需要一个三行表头,第
- 宗毅说 | 乌卡瑟时代的生存思考
裂变学院
今天,互联网经济、人工智能、全球化发展对我们的影响,要比我们想象得大得多。在多股合力的相互作用下,这个时代的社会特征、商业特征与之前相比显著不同,我称之为乌卡瑟“VUCASE”。备注:乌卡瑟(VUCASE)这个术语是我自创的,来自于乌卡(VUKA)。VUCA是Volatility(易变性),Uncertainty(不确定性),Complexity(复杂性)、Ambiguity(模糊性)这四个英文单
- 数据呈现高阶技巧:散点图与桑基图的独特价值
在数据可视化的工具箱中,有些图表看似小众,却能解决特定场景的分析难题。当你需要探索两个变量的关联,或追踪复杂的流量路径时,散点图和桑基图会成为强大的武器。本文将深入解析这两种图表的适用场景、分析逻辑和实战案例,帮你突破传统图表的局限,挖掘更深入的业务洞察。一、散点图:探索变量关系,发现群体特征散点图的核心价值在于展示大样本中两个变量的分布关系。它不像柱状图那样聚焦分类对比,也不像折线图那样追踪时间
- 【CNN】卷积神经网络池化- part2
1.池化降采样,减少参数数量,避免过拟合,提高鲁棒性2.池化操作池化操作(也称为下采样,Subsampling)类似卷积操作,使用的也是一个很小的矩阵,叫做池化核,但是池化核本身没有参数,只是通过对输入特征矩阵本身进行运算,它的大小通常是2x2、3x3、4x4等,其中2x2使用频率最高。然后将池化核在卷积得到的输出特征图中进行池化操作,需要注意的是,池化的过程中也有Padding方式以及步长的概念
- 吴恩达 机器学习cs229-学习笔记-更新中
是娜个二叉树!
机器学习学习笔记
吴恩达机器学习cs22901基础概念语言:Matlab/python监督学习定义:获取一组数据集拟合数据从X到Y的映射回归问题:预测的Y是连续的,Y是实数分类问题:分类指的是Y取离散值,输出是离散的两组,正示例和负示例,把所有样本推到这条直线上,用0,1,标识逻辑回归算法,拟合直线区分正,负示例处理相对大量特征的回归算法或者分类算法支持向量机算法:它使用的不是1,2,3,10个输入特征,而是使用无
- python学习打卡:DAY 18 推断聚类后簇的类型
西西西仓鼠
python训练营python学习聚类
@浙大疏锦行聚类后的分析:推断簇的类型知识点回顾:推断簇含义的2个思路:先选特征和后选特征通过可视化图形借助ai定义簇的含义科研逻辑闭环:通过精度判断特征工程价值作业:参考示例代码对心脏病数据集采取类似操作,并且评估特征工程后模型效果有无提升。在聚类分析中,推断簇的类型是理解数据内在结构和业务意义的关键步骤。以下是系统化的推断方法及常见簇类型的总结:一、簇的基本类型明显分离的簇特征:不同簇中任意两
- 基于深度学习的手写数字和符号识别系统:YOLOv5/v6/v7/v8/v10模型实现与UI界面集成
YOLO实战营
深度学习YOLOui人工智能目标检测计算机视觉
1.引言随着人工智能和深度学习技术的发展,手写数字和符号识别已经成为计算机视觉领域的重要研究方向。手写识别在很多实际应用中扮演着关键角色,例如邮政编码识别、表单自动处理和智能教育系统等。传统的手写识别方法通常依赖于复杂的特征工程,而深度学习则能够自动从数据中学习到特征,极大地提高了识别精度和速度。本文将介绍如何构建一个基于YOLO系列模型(YOLOv5、YOLOv6、YOLOv7、YOLOv8、Y
- 智能体学习记录 一
罗同学213
学习
智能体是什么智能体(IntelligentAgent)是一种能够感知周围环境、自主决策并执行行动以实现特定目标的智能化系统或程序。它可以是软件(如聊天机器人)、硬件(如机器人),或两者结合的实体,核心特征包括:自主性:无需人工实时干预,独立运行(如自动驾驶车辆避障)。反应性:实时感知环境变化并快速响应(如智能家居调节温度)。目标导向:基于预设目标优化行动(如推荐系统最大化用户点击率)。学习能力:通
- 超越自卑 追求卓越
荷笑笑
在《儿童教育心理学》中,作者认为追求优越和自卑感是同一心理现象的两个不同方面。儿童的某些特征是环境作用的结果。相比将孩子培养得野心勃勃而言,我们更应该培养孩子的勇敢、坚忍和自信的品质,要让他们学到解决问题的办法。如果教育者能够判断孩子努力的极限在哪儿,那么孩子的成长和发展就更容易获得进步。没有完全相似的孩子,即使在同一个家庭中成长起来,没有完美的小孩,每个人都在自己的局限性中成长,我们只有发现孩子
- 2023-09-21
感恩学习相信小陶
感恩!六点签到思维是精神世界中最瑰丽的花朵。研究表明,决定一个人成功的最关键因素不是智商,而是思维模式,思维和观念才是控制成功的核心密码。为了告诫世人不要忘却,德国著名哲学家伊曼努尔·康德生前给自己写下这样一段碑文:“重要的不是给予思想,而是给予思维。”脑子要经常思考,不能懒惰。解决问题能力比较强的人都善于思考。思考是成长的唯一方法,思考是人类作为高级动物的特征。优秀的人面对问题经常去思考,在思考
- 机器学习入门(五):线性回归—从模型函数到目标函数
米饭超人
从数据反推公式假设我们获得了这样一张表格,上面列举了美国纽约若干程序员职位的年薪:enterimagedescriptionhere大家可以看到,表格中列举了职位、经验、技能、国家和城市几项特征。除了经验一项,其他都是一样的。不同的经验(工作年限),薪水不同。而且看起来,工作年头越多,工资也就越高。那么我们把Experience与Salary抽取出来,用x和y来分别指代它们。enterimaged
- 读书札记 | 古典小说中的“类关羽”人物
江吴童
对于关羽的崇拜古来有之。不少古典小说中都出现了外貌特征类似关羽的人物,在此做一简单罗列。(欢迎大家留言补充)《三国演义》在《三国演义》中,关羽初登场时,作者借刘备的视角介绍了关羽的外貌:身长九尺,髯长二尺;面如重枣,唇若涂脂;丹凤眼,卧蚕眉,相貌堂堂,威风凛凛。——《第一回·宴桃园豪杰三结义斩黄巾英雄首立功》关羽第八十三回,又借潘璋的视角描绘了显圣的关羽:忽门外一人,面如重枣,丹凤眼,卧蚕眉,飘三
- 一个例子带你入门机器学习
目录1.为建模选择数据2.选择预测目标3.选择“特征”4.构建您的模型(这篇文章将使用经典墨尔本房价数据集作为例子,引导机器学习的流程,数据集为melb_data.csv,请在csdn的下载区自行下载,运行代码时需要将数据集下载在同个目录下)1.为建模选择数据数据集有太多的变量,多到难以理解,甚至无法很好地打印出来。如何将这海量的数据削减为能够理解的内容?我们将首先凭借直觉选择几个变量。后续将介绍
- 借助 Amazon SageMaker Catalog 功能,简化从数据到洞察的路径
在数据驱动的时代,企业常陷于数据孤岛、特征重复开发、模型溯源困难等困境。AmazonSageMakerCatalog应运而生,作为统一的数据和特征治理中心,它能打通从原始数据到模型部署的全链路,显著加速数据科学项目落地。一、痛点:数据科学项目中的常见瓶颈数据发现困难:数据分散在S3、Redshift等不同存储中,缺乏统一视图特征管理混乱:特征工程脚本散落各处,无法复用和共享模型溯源缺失:无法追踪模
- 中山司法亲子鉴定中心地址查询-13家(附2024年最新版)
国权基因
中山司法亲子鉴定中心地址在哪里?中山司法亲子鉴定咨询中心地址在中山市东区兴中道新兴花园翠园街(中山亲鉴生物)。中山亲子鉴定中心就是利用法医学、生物学和遗传学的理论和技术,从子代和亲代的形态构造或生理机能方面的相似特点,分析遗传特征,判断父母与子女之间是否是亲生关系,是法医物证鉴定的主要组成部分。很多人认为正规亲子鉴定需要在医院办理,这其实是一个误区,今天小编就来说说中山司法亲子鉴定中心地址在哪,供
- 人脸检测算法——SCRFD
海绵波波107
#计算机视觉算法计算机视觉
SCRFD算法核心解析1.算法定义与背景SCRFD(SampleandComputationRedistributionforEfficientFaceDetection)由JiaGuo等人于2021年在arXiv提出,是一种高效、高精度的人脸检测算法,其核心创新在于:双重重分配策略:样本重分配(SR):动态增强关键训练阶段的样本数据。计算重分配(CR):通过神经架构搜索(NAS)优化骨干网络(B
- 【中艺平台】唐浩铭【全球艺术家编码6633】作品雅赏(20201229)
大师之道
现为中学生的唐浩铭,从小具有很强的绘画天赋。他对色彩和线条有着异于常人的敏感,对大千世界专注于物象的特征与细节。他从小生活在南国的深圳,城市的环境,动物园的各种鸟兽鱼虫草木都是他描绘的对象。丰富的想象力是他创作的原动力。唐浩铭在观察到自然物的原形时,往往将自己的童真心灵相通,营造一个新的,抽象艺术图形,一个令人新喜的画面。在经过多年的专业学习后,培养起他对绘画的浓厚兴趣,绘画技巧有了很大的提升。他
- 五年级秋季第十三组阅读和作文课总结回访
汪汪_00a1
【知识宝典——读好写小动物的文章】描写小动物的文章一般由以下四部分组成:(1)外形特点:毛色、脑袋、五官、四肢、尾巴等。(2)活动情况:行动、游戏时的情况。(3)生活习性:进食、作息等生理习性。(4)有趣的事:指在它身上发生的有趣的事情或者和作者本人相关的事情,这些事情最能体现小动物的特点和个性。如何阅读、分析写小动物的文章:(1)抓住外形特征①梳理描写顺序:根据小动物的不同情况,作者可能按照从整
- RNA转染(entranster)与Cav3通过Wnt信号通路与骨质疏松大鼠模型骨形成研究
实验小助手
骨质疏松症是一种以骨密度和骨强度降低为特征的疾病,常见于老年人。Caveolin-3(Cav3)是caveolae膜结构域的主要结构蛋白,已被报道可参与细胞信号传导和维持细胞结构。现分享一篇RNA转染(entranster)与Cav3通过Wnt信号通路对骨质疏松大鼠模型骨形成的影响研究的文献,以供参考。文献地址:https://www.engreen.com.cn/rna-transfection
- OpenCV中常用特征提取算法(SURF、ORB、SIFT和AKAZE)用法示例(C++和Python)
点云SLAM
图形图像处理opencv算法ORB算法SIFT算法SURF算法AKAZE算法计算机视觉
OpenCV中提供了多种常用的特征提取算法,广泛应用于图像匹配、拼接、SLAM、物体识别等任务。以下是OpenCV中几个主流特征提取算法的用法总结与代码示例,涵盖C++和Python两个版本。常用特征提取算法列表算法特点是否需额外模块SIFT(尺度不变特征)稳定性强、可旋转缩放xfeatures2d模块SURF(加速稳健特征)快速但专利保护xfeatures2d模块ORB(OrientedFAST
- OpenCV学习(二)-二维、三维识别
香蕉可乐荷包蛋
#OpenCVopencv学习人工智能
OpenCV是一个功能强大的计算机视觉库,可以用于识别和处理二维图像和三维图像。以下是关于二维图像和三维图像识别的基础知识和示例代码。1.二维图像识别二维图像识别通常包括图像分类、对象检测、特征提取等任务。以下是一些常见的操作:1.1图像分类使用预训练模型对图像进行分类,例如使用深度学习模型(如ResNet、MobileNet等)。importcv2#加载预训练的深度学习模型net=cv2.dnn
- 【人工智能之深度学习】6. 卷积核工作原理:从边缘检测到特征抽象的逐层演进(附可视化工具与行业实战代码)
AI_DL_CODE
人工智能深度学习卷积核特征提取卷积神经网络边缘检测特征可视化
摘要:卷积核是卷积神经网络(CNN)的核心组件,其通过局部感受野与参数共享机制实现高效特征提取。本文从数学本质出发,揭示卷积操作的空域-频域对偶性:空域卷积等价于频域乘积(F{f∗g}=F{f}⋅F{g}F\{f*g\}=F\{f\}⋅F\{g\}F{f∗g}=F{f}⋅F{g}),解释边缘检测核(Sobel、Laplacian)的频域响应特性。通过特征可视化实验表明,CNN特征呈现逐层抽象规律:
- Matlab 数字图像 第二章 矩阵及其运算
肌肉猛1大序子
matlab矩阵开发语言图像处理
目录2.1矩阵的创建2.1.1直接输入:2.1.2载入外部数据文件2.1.3利用内置函数创建2.2矩阵的寻访2.2.1下标元素访问2.2.2访问单元素2.3矩阵的拼接2.3.1矩阵拼接符[]2.3.2函数2.4矩阵的运算2.4.1加减2.4.2乘除2.4.3乘方2.4.4按位运算2.4.5行列式与秩2.4.6逆与迹2.4.7矩阵的范数(?)2.4.8特征值和特征向量PS纯纯用来记笔记,要是有错随时
- 雨天障碍物漏检?陌讯多模态算法实测 98% 准确率
2501_92474711
算法目标跟踪人工智能计算机视觉
开篇痛点:自动驾驶视觉系统的“暗礁”在自动驾驶感知层,路面障碍物识别堪称“生命线工程”。传统视觉算法在复杂场景下常面临三重困境:雨天水雾导致特征模糊时漏检率高达25%,逆光环境下小目标(如碎石、井盖)检出率不足60%,而追求高精度又会导致帧率跌破20FPS,难以满足实时性要求[1]。某车企实测数据显示,传统YOLOv8在城郊混合路况中,因障碍物识别延迟引发的决策偏差占测试事故的37%,这些问题成为
- 育人宝贝教师百日行动派#day26
千玺妈妈我是你儿媳妇
每日5000步✔今日所读《幼儿文学》第二节幼儿诗二、幼儿诗的艺术特征幼儿诗作为诗歌王国的组成部分,具有所有诗歌类作品的共同特点,同时又有自身的特征。幼儿诗表现幼儿的情感、性灵和体验,是以幼儿为本位的。体现着幼儿的心理与意识。同时,幼儿诗所透出的幼儿活泼的天性,不受束缚的幻想及成长过程中的各种情绪与成人诗复杂、深沉,隐藏、朦胧的特征有着明显的区别。幼儿诗的艺术特征主要表现在以下方面:(一)抒发幼儿的
- 机器学习专栏(62):手把手实现工业级ResNet-34及调优全攻略
目录一、ResNet革命性突破解析1.1残差学习核心思想1.2ResNet-34结构详解二、工业级Keras实现详解2.1数据预处理流水线2.2完整模型实现三、模型训练调优策略3.1学习率动态调整3.2混合精度训练四、性能优化技巧4.1分布式训练配置4.2TensorRT推理加速五、实战应用案例5.1医疗影像分类5.2工业质检系统六、模型可视化分析6.1特征热力图6.2参数量分析七、常见问题解决方
- 头盔识别误报率高?陌讯YOLOv7优化方案实测准确率达99%!
开篇痛点:算法失效的致命时刻在智慧交通领域,电动车头盔识别长期面临三大痛点:漏检危机:行人遮挡、雨天反光导致传统算法漏检率高达15%(某头部车企实测数据)误报泛滥:相似物体(背包、安全帽)误识别率超20%实时性缺陷:开源模型在1080P视频流中处理延时>200ms,无法满足实时预警需求技术解析:陌讯算法三重创新架构graphTDA[双路输入]-->B[多尺度特征融合模块]B-->C[空间注意力机制
- Java 并发包之线程池和原子计数
lijingyao8206
Java计数ThreadPool并发包java线程池
对于大数据量关联的业务处理逻辑,比较直接的想法就是用JDK提供的并发包去解决多线程情况下的业务数据处理。线程池可以提供很好的管理线程的方式,并且可以提高线程利用率,并发包中的原子计数在多线程的情况下可以让我们避免去写一些同步代码。
这里就先把jdk并发包中的线程池处理器ThreadPoolExecutor 以原子计数类AomicInteger 和倒数计时锁C
- java编程思想 抽象类和接口
百合不是茶
java抽象类接口
接口c++对接口和内部类只有简介的支持,但在java中有队这些类的直接支持
1 ,抽象类 : 如果一个类包含一个或多个抽象方法,该类必须限定为抽象类(否者编译器报错)
抽象方法 : 在方法中仅有声明而没有方法体
package com.wj.Interface;
- [房地产与大数据]房地产数据挖掘系统
comsci
数据挖掘
随着一个关键核心技术的突破,我们已经是独立自主的开发某些先进模块,但是要完全实现,还需要一定的时间...
所以,除了代码工作以外,我们还需要关心一下非技术领域的事件..比如说房地产
&nb
- 数组队列总结
沐刃青蛟
数组队列
数组队列是一种大小可以改变,类型没有定死的类似数组的工具。不过与数组相比,它更具有灵活性。因为它不但不用担心越界问题,而且因为泛型(类似c++中模板的东西)的存在而支持各种类型。
以下是数组队列的功能实现代码:
import List.Student;
public class
- Oracle存储过程无法编译的解决方法
IT独行者
oracle存储过程
今天同事修改Oracle存储过程又导致2个过程无法被编译,流程规范上的东西,Dave 这里不多说,看看怎么解决问题。
1. 查看无效对象
XEZF@xezf(qs-xezf-db1)> select object_name,object_type,status from all_objects where status='IN
- 重装系统之后oracle恢复
文强chu
oracle
前几天正在使用电脑,没有暂停oracle的各种服务。
突然win8.1系统奔溃,无法修复,开机时系统 提示正在搜集错误信息,然后再开机,再提示的无限循环中。
无耐我拿出系统u盘 准备重装系统,没想到竟然无法从u盘引导成功。
晚上到外面早了一家修电脑店,让人家给装了个系统,并且那哥们在我没反应过来的时候,
直接把我的c盘给格式化了 并且清理了注册表,再装系统。
然后的结果就是我的oracl
- python学习二( 一些基础语法)
小桔子
pthon基础语法
紧接着把!昨天没看继续看django 官方教程,学了下python的基本语法 与c类语言还是有些小差别:
1.ptyhon的源文件以UTF-8编码格式
2.
/ 除 结果浮点型
// 除 结果整形
% 除 取余数
* 乘
** 乘方 eg 5**2 结果是5的2次方25
_&
- svn 常用命令
aichenglong
SVN版本回退
1 svn回退版本
1)在window中选择log,根据想要回退的内容,选择revert this version或revert chanages from this version
两者的区别:
revert this version:表示回退到当前版本(该版本后的版本全部作废)
revert chanages from this versio
- 某小公司面试归来
alafqq
面试
先填单子,还要写笔试题,我以时间为急,拒绝了它。。时间宝贵。
老拿这些对付毕业生的东东来吓唬我。。
面试官很刁难,问了几个问题,记录下;
1,包的范围。。。public,private,protect. --悲剧了
2,hashcode方法和equals方法的区别。谁覆盖谁.结果,他说我说反了。
3,最恶心的一道题,抽象类继承抽象类吗?(察,一般它都是被继承的啊)
4,stru
- 动态数组的存储速度比较 集合框架
百合不是茶
集合框架
集合框架:
自定义数据结构(增删改查等)
package 数组;
/**
* 创建动态数组
* @author 百合
*
*/
public class ArrayDemo{
//定义一个数组来存放数据
String[] src = new String[0];
/**
* 增加元素加入容器
* @param s要加入容器
- 用JS实现一个JS对象,对象里有两个属性一个方法
bijian1013
js对象
<html>
<head>
</head>
<body>
用js代码实现一个js对象,对象里有两个属性,一个方法
</body>
<script>
var obj={a:'1234567',b:'bbbbbbbbbb',c:function(x){
- 探索JUnit4扩展:使用Rule
bijian1013
java单元测试JUnitRule
在上一篇文章中,讨论了使用Runner扩展JUnit4的方式,即直接修改Test Runner的实现(BlockJUnit4ClassRunner)。但这种方法显然不便于灵活地添加或删除扩展功能。下面将使用JUnit4.7才开始引入的扩展方式——Rule来实现相同的扩展功能。
1. Rule
&n
- [Gson一]非泛型POJO对象的反序列化
bit1129
POJO
当要将JSON数据串反序列化自身为非泛型的POJO时,使用Gson.fromJson(String, Class)方法。自身为非泛型的POJO的包括两种:
1. POJO对象不包含任何泛型的字段
2. POJO对象包含泛型字段,例如泛型集合或者泛型类
Data类 a.不是泛型类, b.Data中的集合List和Map都是泛型的 c.Data中不包含其它的POJO
 
- 【Kakfa五】Kafka Producer和Consumer基本使用
bit1129
kafka
0.Kafka服务器的配置
一个Broker,
一个Topic
Topic中只有一个Partition() 1. Producer:
package kafka.examples.producers;
import kafka.producer.KeyedMessage;
import kafka.javaapi.producer.Producer;
impor
- lsyncd实时同步搭建指南——取代rsync+inotify
ronin47
1. 几大实时同步工具比较 1.1 inotify + rsync
最近一直在寻求生产服务服务器上的同步替代方案,原先使用的是 inotify + rsync,但随着文件数量的增大到100W+,目录下的文件列表就达20M,在网络状况不佳或者限速的情况下,变更的文件可能10来个才几M,却因此要发送的文件列表就达20M,严重减低的带宽的使用效率以及同步效率;更为要紧的是,加入inotify
- java-9. 判断整数序列是不是二元查找树的后序遍历结果
bylijinnan
java
public class IsBinTreePostTraverse{
static boolean isBSTPostOrder(int[] a){
if(a==null){
return false;
}
/*1.只有一个结点时,肯定是查找树
*2.只有两个结点时,肯定是查找树。例如{5,6}对应的BST是 6 {6,5}对应的BST是
- MySQL的sum函数返回的类型
bylijinnan
javaspringsqlmysqljdbc
今天项目切换数据库时,出错
访问数据库的代码大概是这样:
String sql = "select sum(number) as sumNumberOfOneDay from tableName";
List<Map> rows = getJdbcTemplate().queryForList(sql);
for (Map row : rows
- java设计模式之单例模式
chicony
java设计模式
在阎宏博士的《JAVA与模式》一书中开头是这样描述单例模式的:
作为对象的创建模式,单例模式确保某一个类只有一个实例,而且自行实例化并向整个系统提供这个实例。这个类称为单例类。 单例模式的结构
单例模式的特点:
单例类只能有一个实例。
单例类必须自己创建自己的唯一实例。
单例类必须给所有其他对象提供这一实例。
饿汉式单例类
publ
- javascript取当月最后一天
ctrain
JavaScript
<!--javascript取当月最后一天-->
<script language=javascript>
var current = new Date();
var year = current.getYear();
var month = current.getMonth();
showMonthLastDay(year, mont
- linux tune2fs命令详解
daizj
linuxtune2fs查看系统文件块信息
一.简介:
tune2fs是调整和查看ext2/ext3文件系统的文件系统参数,Windows下面如果出现意外断电死机情况,下次开机一般都会出现系统自检。Linux系统下面也有文件系统自检,而且是可以通过tune2fs命令,自行定义自检周期及方式。
二.用法:
Usage: tune2fs [-c max_mounts_count] [-e errors_behavior] [-g grou
- 做有中国特色的程序员
dcj3sjt126com
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有
- Android:TextView属性大全
dcj3sjt126com
textview
android:autoLink 设置是否当文本为URL链接/email/电话号码/map时,文本显示为可点击的链接。可选值(none/web/email/phone/map/all) android:autoText 如果设置,将自动执行输入值的拼写纠正。此处无效果,在显示输入法并输
- tomcat虚拟目录安装及其配置
eksliang
tomcat配置说明tomca部署web应用tomcat虚拟目录安装
转载请出自出处:http://eksliang.iteye.com/blog/2097184
1.-------------------------------------------tomcat 目录结构
config:存放tomcat的配置文件
temp :存放tomcat跑起来后存放临时文件用的
work : 当第一次访问应用中的jsp
- 浅谈:APP有哪些常被黑客利用的安全漏洞
gg163
APP
首先,说到APP的安全漏洞,身为程序猿的大家应该不陌生;如果抛开安卓自身开源的问题的话,其主要产生的原因就是开发过程中疏忽或者代码不严谨引起的。但这些责任也不能怪在程序猿头上,有时会因为BOSS时间催得紧等很多可观原因。由国内移动应用安全检测团队爱内测(ineice.com)的CTO给我们浅谈关于Android 系统的开源设计以及生态环境。
1. 应用反编译漏洞:APK 包非常容易被反编译成可读
- C#根据网址生成静态页面
hvt
Web.netC#asp.nethovertree
HoverTree开源项目中HoverTreeWeb.HVTPanel的Index.aspx文件是后台管理的首页。包含生成留言板首页,以及显示用户名,退出等功能。根据网址生成页面的方法:
bool CreateHtmlFile(string url, string path)
{
//http://keleyi.com/a/bjae/3d10wfax.htm
stri
- SVG 教程 (一)
天梯梦
svg
SVG 简介
SVG 是使用 XML 来描述二维图形和绘图程序的语言。 学习之前应具备的基础知识:
继续学习之前,你应该对以下内容有基本的了解:
HTML
XML 基础
如果希望首先学习这些内容,请在本站的首页选择相应的教程。 什么是SVG?
SVG 指可伸缩矢量图形 (Scalable Vector Graphics)
SVG 用来定义用于网络的基于矢量
- 一个简单的java栈
luyulong
java数据结构栈
public class MyStack {
private long[] arr;
private int top;
public MyStack() {
arr = new long[10];
top = -1;
}
public MyStack(int maxsize) {
arr = new long[maxsize];
top
- 基础数据结构和算法八:Binary search
sunwinner
AlgorithmBinary search
Binary search needs an ordered array so that it can use array indexing to dramatically reduce the number of compares required for each search, using the classic and venerable binary search algori
- 12个C语言面试题,涉及指针、进程、运算、结构体、函数、内存,看看你能做出几个!
刘星宇
c面试
12个C语言面试题,涉及指针、进程、运算、结构体、函数、内存,看看你能做出几个!
1.gets()函数
问:请找出下面代码里的问题:
#include<stdio.h>
int main(void)
{
char buff[10];
memset(buff,0,sizeof(buff));
- ITeye 7月技术图书有奖试读获奖名单公布
ITeye管理员
活动ITeye试读
ITeye携手人民邮电出版社图灵教育共同举办的7月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
7月试读活动回顾:
http://webmaster.iteye.com/blog/2092746
本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《Java性能优化权威指南》