JUC AQS ReentrantLock源码分析

  为了了解java并发包下的  ReentrantLock 可重入锁 和 AbstractQueuedSynchronizer 抽象队列同步器,我自己创建了这两个类,改一下类名,把他们的代码贴过来,再删除英文注释,一步步的分析,再贴上自己的中文理解。
然后我发现 BacAQS只有940行,BacReentrantLock 只有230行,然后攻克她。Bac 是我起的英文名,高大上的寓意是 大数据BigData ,Ai人工智能,CloudComputing云计算。读音:巴西。不是喜欢足球,是自己胖得像球。。。
  直接上代码,后续会慢慢解读,补充中文注释。你也可以按这个方法,一起学习哦。

可重入锁:
 
    
package www.itbac.com;

import java.util.Collection;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
//可重入锁
public class BacReentrantLock implements Lock, java.io.Serializable {
private static final long serialVersionUID = 9115702519755564786L;

private final Sync sync;
//FairSync 公平同步,公平锁。
//NonfairSync 非公平同步,非公平锁
abstract static class Sync extends BacAQS {
private static final long serialVersionUID = -5179523762034025860L;

abstract void lock();
//非公平尝试获取锁
final boolean nonfairTryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
if (c == 0) {
if (compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0)
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}
//尝试释放
@Override
protected final boolean tryRelease(int releases) {
int c = getState() - releases;
if (Thread.currentThread() != getExclusiveOwnerThread())
throw new IllegalMonitorStateException();
boolean free = false;
if (c == 0) {
free = true;
setExclusiveOwnerThread(null);
}
setState(c);
return free;
}

@Override
protected final boolean isHeldExclusively() {
return getExclusiveOwnerThread() == Thread.currentThread();
}

final ConditionObject newCondition() {
return new ConditionObject();
}


final Thread getOwner() {
return getState() == 0 ? null : getExclusiveOwnerThread();
}

final int getHoldCount() {
return isHeldExclusively() ? getState() : 0;
}

final boolean isLocked() {
return getState() != 0;
}

private void readObject(java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException {
s.defaultReadObject();
setState(0);
}
}
//非公平锁
static final class NonfairSync extends Sync {
private static final long serialVersionUID = 7316153563782823691L;

@Override
final void lock() {
if (compareAndSetState(0, 1))
setExclusiveOwnerThread(Thread.currentThread());
else
acquire(1);
}

protected final boolean tryAcquire(int acquires) {
return nonfairTryAcquire(acquires);
}
}
//公平锁
static final class FairSync extends Sync {
private static final long serialVersionUID = -3000897897090466540L;

@Override
final void lock() {
acquire(1);
}
protected final boolean tryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
if (c == 0) {
if (!hasQueuedPredecessors() &&
compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0)
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}
}
//无参构造
public BacReentrantLock() {
sync = new NonfairSync();
}
//有参构造,可选择 公平锁 或 非公平锁
public BacReentrantLock(boolean fair) {
sync = fair ? new FairSync() : new NonfairSync();
}
//获取锁
@Override
public void lock() {
sync.lock();
}
//线程中断
@Override
public void lockInterruptibly() throws InterruptedException {
sync.acquireInterruptibly(1);
}
//尝试获取锁
@Override
public boolean tryLock() {
return sync.nonfairTryAcquire(1);
}
//尝试获取锁
@Override
public boolean tryLock(long timeout, TimeUnit unit)
throws InterruptedException {
return sync.tryAcquireNanos(1, unit.toNanos(timeout));
}
//释放锁
@Override
public void unlock() {
sync.release(1);
}

@Override
public Condition newCondition() {
return sync.newCondition();
}

public int getHoldCount() {
return sync.getHoldCount();
}

public boolean isHeldByCurrentThread() {
return sync.isHeldExclusively();
}

public boolean isLocked() {
return sync.isLocked();
}

public final boolean isFair() {
return sync instanceof FairSync;
}

protected Thread getOwner() {
return sync.getOwner();
}

public final boolean hasQueuedThreads() {
return sync.hasQueuedThreads();
}

public final boolean hasQueuedThread(Thread thread) {
return sync.isQueued(thread);
}

public final int getQueueLength() {
return sync.getQueueLength();
}

protected Collection getQueuedThreads() {
return sync.getQueuedThreads();
}

public boolean hasWaiters(Condition condition) {
if (condition == null)
throw new NullPointerException();
if (!(condition instanceof BacAQS.ConditionObject))
throw new IllegalArgumentException("not owner");
return sync.hasWaiters((BacAQS.ConditionObject)condition);
}

public int getWaitQueueLength(Condition condition) {
if (condition == null)
throw new NullPointerException();
if (!(condition instanceof BacAQS.ConditionObject))
throw new IllegalArgumentException("not owner");
return sync.getWaitQueueLength((BacAQS.ConditionObject)condition);
}

protected Collection getWaitingThreads(Condition condition) {
if (condition == null)
throw new NullPointerException();
if (!(condition instanceof BacAQS.ConditionObject))
throw new IllegalArgumentException("not owner");
return sync.getWaitingThreads((BacAQS.ConditionObject)condition);
}

@Override
public String toString() {
Thread o = sync.getOwner();
return super.toString() + ((o == null) ?
"[Unlocked]" :
"[Locked by thread " + o.getName() + "]");
}
}
 

抽象队列同步器:

 
    
package www.itbac.com;

import sun.misc.Unsafe;

import java.util.ArrayList;
import java.util.Collection;
import java.util.Date;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.*;

//AbstractQueuedSynchronizer 抽象队列器
public abstract class BacAQS extends AbstractOwnableSynchronizer
implements java.io.Serializable{
private static final long serialVersionUID = -8891887006214362370L;
protected BacAQS() { }
//Node节点
static final class Node {
static final Node SHARED = new Node();
static final Node EXCLUSIVE = null;
static final int CANCELLED = 1;
static final int SIGNAL = -1;
static final int CONDITION = -2;
static final int PROPAGATE = -3;
//volatile 关键字修饰变量,让变量具有 可见性,是指线程之间的可见性,一个线程修改的状态对另一个线程是可见的。
//等待状态
volatile int waitStatus;
//上一个节点
volatile Node prev;
//下一个节点
volatile Node next;
//自己节点存储自己的线程
volatile Thread thread;
//下一个服务员
Node nextWaiter;

final boolean isShared() {
return nextWaiter == SHARED;
}
//获取当前节点的上一个节点。
final Node predecessor() throws NullPointerException {
Node p = prev;
if (p == null)
throw new NullPointerException();
else
return p;
}
//无参构造
Node() {
}
//有参构造
Node(Thread thread, Node mode) {
this.nextWaiter = mode;
this.thread = thread;
}
//有参构造
Node(Thread thread, int waitStatus) {
this.waitStatus = waitStatus;
this.thread = thread;
}
}
//用transient关键字标记的成员变量不参与序列化过程
//队列的 头 节点
private transient volatile Node head;
//队列的 尾 节点
private transient volatile Node tail;
//锁的状态: 初始状态0 ,加锁成功则为1 ,重入 +1 ,解锁则恢复为 0 。
private volatile int state;
//获取状态
protected final int getState() {
return state;
}
//设置状态
protected final void setState(int newState) {
state = newState;
}

protected final boolean compareAndSetState(int expect, int update) {
return unsafe.compareAndSwapInt(this, stateOffset, expect, update);
}

static final long spinForTimeoutThreshold = 1000L;

private Node enq(final Node node) {
for (;;) {
Node t = tail;
if (t == null) { // Must initialize
if (compareAndSetHead(new Node()))
tail = head;
} else {
node.prev = t;
if (compareAndSetTail(t, node)) {
t.next = node;
return t;
}
}
}
}

private Node addWaiter(Node mode) {
Node node = new Node(Thread.currentThread(), mode);
Node pred = tail;
if (pred != null) {
node.prev = pred;
if (compareAndSetTail(pred, node)) {
pred.next = node;
return node;
}
}
enq(node);
return node;
}

private void setHead(Node node) {
head = node;
node.thread = null;
node.prev = null;
}

private void unparkSuccessor(Node node) {
int ws = node.waitStatus;
if (ws < 0)
compareAndSetWaitStatus(node, ws, 0);

Node s = node.next;
if (s == null || s.waitStatus > 0) {
s = null;
for (Node t = tail; t != null && t != node; t = t.prev)
if (t.waitStatus <= 0)
s = t;
}
if (s != null)
LockSupport.unpark(s.thread);
}

private void doReleaseShared() {
for (;;) {
Node h = head;
if (h != null && h != tail) {
int ws = h.waitStatus;
if (ws == Node.SIGNAL) {
if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))
continue; // loop to recheck cases
unparkSuccessor(h);
}
else if (ws == 0 &&
!compareAndSetWaitStatus(h, 0, Node.PROPAGATE))
continue; // loop on failed CAS
}
if (h == head) // loop if head changed
break;
}
}

private void setHeadAndPropagate(Node node, int propagate) {
Node h = head; // Record old head for check below
setHead(node);
if (propagate > 0 || h == null || h.waitStatus < 0 ||
(h = head) == null || h.waitStatus < 0) {
Node s = node.next;
if (s == null || s.isShared())
doReleaseShared();
}
}

private void cancelAcquire(Node node) {
if (node == null)
return;

node.thread = null;

Node pred = node.prev;
while (pred.waitStatus > 0)
node.prev = pred = pred.prev;

Node predNext = pred.next;

node.waitStatus = Node.CANCELLED;

if (node == tail && compareAndSetTail(node, pred)) {
compareAndSetNext(pred, predNext, null);
} else {
int ws;
if (pred != head &&
((ws = pred.waitStatus) == Node.SIGNAL ||
(ws <= 0 && compareAndSetWaitStatus(pred, ws, Node.SIGNAL))) &&
pred.thread != null) {
Node next = node.next;
if (next != null && next.waitStatus <= 0)
compareAndSetNext(pred, predNext, next);
} else {
unparkSuccessor(node);
}

node.next = node; // help GC
}
}

private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
int ws = pred.waitStatus;
if (ws == Node.SIGNAL)
return true;
if (ws > 0) {
do {
node.prev = pred = pred.prev;
} while (pred.waitStatus > 0);
pred.next = node;
} else {
compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
}
return false;
}

static void selfInterrupt() {
Thread.currentThread().interrupt();
}

private final boolean parkAndCheckInterrupt() {
LockSupport.park(this);
return Thread.interrupted();
}

final boolean acquireQueued(final Node node, int arg) {
boolean failed = true;
try {
boolean interrupted = false;
for (;;) {
final Node p = node.predecessor();
if (p == head && tryAcquire(arg)) {
setHead(node);
p.next = null; // help GC
failed = false;
return interrupted;
}
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
interrupted = true;
}
} finally {
if (failed)
cancelAcquire(node);
}
}

private void doAcquireInterruptibly(int arg)
throws InterruptedException {
final Node node = addWaiter(Node.EXCLUSIVE);
boolean failed = true;
try {
for (;;) {
final Node p = node.predecessor();
if (p == head && tryAcquire(arg)) {
setHead(node);
p.next = null; // help GC
failed = false;
return;
}
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
throw new InterruptedException();
}
} finally {
if (failed)
cancelAcquire(node);
}
}

private boolean doAcquireNanos(int arg, long nanosTimeout)
throws InterruptedException {
if (nanosTimeout <= 0L)
return false;
final long deadline = System.nanoTime() + nanosTimeout;
final Node node = addWaiter(Node.EXCLUSIVE);
boolean failed = true;
try {
for (;;) {
final Node p = node.predecessor();
if (p == head && tryAcquire(arg)) {
setHead(node);
p.next = null; // help GC
failed = false;
return true;
}
nanosTimeout = deadline - System.nanoTime();
if (nanosTimeout <= 0L)
return false;
if (shouldParkAfterFailedAcquire(p, node) &&
nanosTimeout > spinForTimeoutThreshold)
LockSupport.parkNanos(this, nanosTimeout);
if (Thread.interrupted())
throw new InterruptedException();
}
} finally {
if (failed)
cancelAcquire(node);
}
}

private void doAcquireShared(int arg) {
final Node node = addWaiter(Node.SHARED);
boolean failed = true;
try {
boolean interrupted = false;
for (;;) {
final Node p = node.predecessor();
if (p == head) {
int r = tryAcquireShared(arg);
if (r >= 0) {
setHeadAndPropagate(node, r);
p.next = null; // help GC
if (interrupted)
selfInterrupt();
failed = false;
return;
}
}
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
interrupted = true;
}
} finally {
if (failed)
cancelAcquire(node);
}
}

private void doAcquireSharedInterruptibly(int arg)
throws InterruptedException {
final Node node = addWaiter(Node.SHARED);
boolean failed = true;
try {
for (;;) {
final Node p = node.predecessor();
if (p == head) {
int r = tryAcquireShared(arg);
if (r >= 0) {
setHeadAndPropagate(node, r);
p.next = null; // help GC
failed = false;
return;
}
}
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
throw new InterruptedException();
}
} finally {
if (failed)
cancelAcquire(node);
}
}

private boolean doAcquireSharedNanos(int arg, long nanosTimeout)
throws InterruptedException {
if (nanosTimeout <= 0L)
return false;
final long deadline = System.nanoTime() + nanosTimeout;
final Node node = addWaiter(Node.SHARED);
boolean failed = true;
try {
for (;;) {
final Node p = node.predecessor();
if (p == head) {
int r = tryAcquireShared(arg);
if (r >= 0) {
setHeadAndPropagate(node, r);
p.next = null; // help GC
failed = false;
return true;
}
}
nanosTimeout = deadline - System.nanoTime();
if (nanosTimeout <= 0L)
return false;
if (shouldParkAfterFailedAcquire(p, node) &&
nanosTimeout > spinForTimeoutThreshold)
LockSupport.parkNanos(this, nanosTimeout);
if (Thread.interrupted())
throw new InterruptedException();
}
} finally {
if (failed)
cancelAcquire(node);
}
}

protected boolean tryAcquire(int arg) {
throw new UnsupportedOperationException();
}

protected boolean tryRelease(int arg) {
throw new UnsupportedOperationException();
}

protected int tryAcquireShared(int arg) {
throw new UnsupportedOperationException();
}

protected boolean tryReleaseShared(int arg) {
throw new UnsupportedOperationException();
}

protected boolean isHeldExclusively() {
throw new UnsupportedOperationException();
}

public final void acquire(int arg) {
if (!tryAcquire(arg) &&
acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
}
public final void acquireInterruptibly(int arg)
throws InterruptedException {
if (Thread.interrupted())
throw new InterruptedException();
if (!tryAcquire(arg))
doAcquireInterruptibly(arg);
}
public final boolean tryAcquireNanos(int arg, long nanosTimeout)
throws InterruptedException {
if (Thread.interrupted())
throw new InterruptedException();
return tryAcquire(arg) ||
doAcquireNanos(arg, nanosTimeout);
}
public final boolean release(int arg) {
if (tryRelease(arg)) {
Node h = head;
if (h != null && h.waitStatus != 0)
unparkSuccessor(h);
return true;
}
return false;
}
public final void acquireShared(int arg) {
if (tryAcquireShared(arg) < 0)
doAcquireShared(arg);
}
public final void acquireSharedInterruptibly(int arg)
throws InterruptedException {
if (Thread.interrupted())
throw new InterruptedException();
if (tryAcquireShared(arg) < 0)
doAcquireSharedInterruptibly(arg);
}

public final boolean tryAcquireSharedNanos(int arg, long nanosTimeout)
throws InterruptedException {
if (Thread.interrupted())
throw new InterruptedException();
return tryAcquireShared(arg) >= 0 ||
doAcquireSharedNanos(arg, nanosTimeout);
}

public final boolean releaseShared(int arg) {
if (tryReleaseShared(arg)) {
doReleaseShared();
return true;
}
return false;
}


public final boolean hasQueuedThreads() {
return head != tail;
}

public final boolean hasContended() {
return head != null;
}

public final Thread getFirstQueuedThread() {
return (head == tail) ? null : fullGetFirstQueuedThread();
}

private Thread fullGetFirstQueuedThread() {
Node h, s;
Thread st;
if (((h = head) != null && (s = h.next) != null &&
s.prev == head && (st = s.thread) != null) ||
((h = head) != null && (s = h.next) != null &&
s.prev == head && (st = s.thread) != null))
return st;


Node t = tail;
Thread firstThread = null;
while (t != null && t != head) {
Thread tt = t.thread;
if (tt != null)
firstThread = tt;
t = t.prev;
}
return firstThread;
}

public final boolean isQueued(Thread thread) {
if (thread == null)
throw new NullPointerException();
for (Node p = tail; p != null; p = p.prev)
if (p.thread == thread)
return true;
return false;
}

final boolean apparentlyFirstQueuedIsExclusive() {
Node h, s;
return (h = head) != null &&
(s = h.next) != null &&
!s.isShared() &&
s.thread != null;
}

public final boolean hasQueuedPredecessors() {
Node t = tail;
Node h = head;
Node s;
return h != t &&
((s = h.next) == null || s.thread != Thread.currentThread());
}

public final int getQueueLength() {
int n = 0;
for (Node p = tail; p != null; p = p.prev) {
if (p.thread != null)
++n;
}
return n;
}
public final Collection getQueuedThreads() {
ArrayList list = new ArrayList();
for (Node p = tail; p != null; p = p.prev) {
Thread t = p.thread;
if (t != null)
list.add(t);
}
return list;
}

public final Collection getExclusiveQueuedThreads() {
ArrayList list = new ArrayList();
for (Node p = tail; p != null; p = p.prev) {
if (!p.isShared()) {
Thread t = p.thread;
if (t != null)
list.add(t);
}
}
return list;
}
public final Collection getSharedQueuedThreads() {
ArrayList list = new ArrayList();
for (Node p = tail; p != null; p = p.prev) {
if (p.isShared()) {
Thread t = p.thread;
if (t != null)
list.add(t);
}
}
return list;
}
public String toString() {
int s = getState();
String q = hasQueuedThreads() ? "non" : "";
return super.toString() +
"[State = " + s + ", " + q + "empty queue]";
}
final boolean isOnSyncQueue(Node node) {
if (node.waitStatus == Node.CONDITION || node.prev == null)
return false;
if (node.next != null) // If has successor, it must be on queue
return true;
return findNodeFromTail(node);
}


private boolean findNodeFromTail(Node node) {
Node t = tail;
for (;;) {
if (t == node)
return true;
if (t == null)
return false;
t = t.prev;
}
}

final boolean transferForSignal(Node node) {
if (!compareAndSetWaitStatus(node, Node.CONDITION, 0))
return false;

Node p = enq(node);
int ws = p.waitStatus;
if (ws > 0 || !compareAndSetWaitStatus(p, ws, Node.SIGNAL))
LockSupport.unpark(node.thread);
return true;
}

final boolean transferAfterCancelledWait(Node node) {
if (compareAndSetWaitStatus(node, Node.CONDITION, 0)) {
enq(node);
return true;
}
while (!isOnSyncQueue(node))
Thread.yield();
return false;
}

final int fullyRelease(Node node) {
boolean failed = true;
try {
int savedState = getState();
if (release(savedState)) {
failed = false;
return savedState;
} else {
throw new IllegalMonitorStateException();
}
} finally {
if (failed)
node.waitStatus = Node.CANCELLED;
}
}

public final boolean owns(ConditionObject condition) {
return condition.isOwnedBy(this);
}

public final boolean hasWaiters(ConditionObject condition) {
if (!owns(condition))
throw new IllegalArgumentException("Not owner");
return condition.hasWaiters();
}

public final int getWaitQueueLength(ConditionObject condition) {
if (!owns(condition))
throw new IllegalArgumentException("Not owner");
return condition.getWaitQueueLength();
}

public final Collection getWaitingThreads(ConditionObject condition) {
if (!owns(condition))
throw new IllegalArgumentException("Not owner");
return condition.getWaitingThreads();
}

public class ConditionObject implements Condition, java.io.Serializable {
private static final long serialVersionUID = 1173984872572414699L;
private transient Node firstWaiter;
private transient Node lastWaiter;

public ConditionObject() { }

private Node addConditionWaiter() {
Node t = lastWaiter;
if (t != null && t.waitStatus != Node.CONDITION) {
unlinkCancelledWaiters();
t = lastWaiter;
}
Node node = new Node(Thread.currentThread(), Node.CONDITION);
if (t == null)
firstWaiter = node;
else
t.nextWaiter = node;
lastWaiter = node;
return node;
}

private void doSignal(Node first) {
do {
if ( (firstWaiter = first.nextWaiter) == null)
lastWaiter = null;
first.nextWaiter = null;
} while (!transferForSignal(first) &&
(first = firstWaiter) != null);
}

private void doSignalAll(Node first) {
lastWaiter = firstWaiter = null;
do {
Node next = first.nextWaiter;
first.nextWaiter = null;
transferForSignal(first);
first = next;
} while (first != null);
}

private void unlinkCancelledWaiters() {
Node t = firstWaiter;
Node trail = null;
while (t != null) {
Node next = t.nextWaiter;
if (t.waitStatus != Node.CONDITION) {
t.nextWaiter = null;
if (trail == null)
firstWaiter = next;
else
trail.nextWaiter = next;
if (next == null)
lastWaiter = trail;
}
else
trail = t;
t = next;
}
}

public final void signal() {
if (!isHeldExclusively())
throw new IllegalMonitorStateException();
Node first = firstWaiter;
if (first != null)
doSignal(first);
}

public final void signalAll() {
if (!isHeldExclusively())
throw new IllegalMonitorStateException();
Node first = firstWaiter;
if (first != null)
doSignalAll(first);
}

public final void awaitUninterruptibly() {
Node node = addConditionWaiter();
int savedState = fullyRelease(node);
boolean interrupted = false;
while (!isOnSyncQueue(node)) {
LockSupport.park(this);
if (Thread.interrupted())
interrupted = true;
}
if (acquireQueued(node, savedState) || interrupted)
selfInterrupt();
}


private static final int REINTERRUPT = 1;
private static final int THROW_IE = -1;

private int checkInterruptWhileWaiting(Node node) {
return Thread.interrupted() ?
(transferAfterCancelledWait(node) ? THROW_IE : REINTERRUPT) :
0;
}

private void reportInterruptAfterWait(int interruptMode)
throws InterruptedException {
if (interruptMode == THROW_IE)
throw new InterruptedException();
else if (interruptMode == REINTERRUPT)
selfInterrupt();
}

public final void await() throws InterruptedException {
if (Thread.interrupted())
throw new InterruptedException();
Node node = addConditionWaiter();
int savedState = fullyRelease(node);
int interruptMode = 0;
while (!isOnSyncQueue(node)) {
LockSupport.park(this);
if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
break;
}
if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
interruptMode = REINTERRUPT;
if (node.nextWaiter != null)
unlinkCancelledWaiters();
if (interruptMode != 0)
reportInterruptAfterWait(interruptMode);
}

public final long awaitNanos(long nanosTimeout)
throws InterruptedException {
if (Thread.interrupted())
throw new InterruptedException();
Node node = addConditionWaiter();
int savedState = fullyRelease(node);
final long deadline = System.nanoTime() + nanosTimeout;
int interruptMode = 0;
while (!isOnSyncQueue(node)) {
if (nanosTimeout <= 0L) {
transferAfterCancelledWait(node);
break;
}
if (nanosTimeout >= spinForTimeoutThreshold)
LockSupport.parkNanos(this, nanosTimeout);
if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
break;
nanosTimeout = deadline - System.nanoTime();
}
if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
interruptMode = REINTERRUPT;
if (node.nextWaiter != null)
unlinkCancelledWaiters();
if (interruptMode != 0)
reportInterruptAfterWait(interruptMode);
return deadline - System.nanoTime();
}

@Override
public final boolean awaitUntil(Date deadline)
throws InterruptedException {
long abstime = deadline.getTime();
if (Thread.interrupted())
throw new InterruptedException();
Node node = addConditionWaiter();
int savedState = fullyRelease(node);
boolean timedout = false;
int interruptMode = 0;
while (!isOnSyncQueue(node)) {
if (System.currentTimeMillis() > abstime) {
timedout = transferAfterCancelledWait(node);
break;
}
LockSupport.parkUntil(this, abstime);
if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
break;
}
if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
interruptMode = REINTERRUPT;
if (node.nextWaiter != null)
unlinkCancelledWaiters();
if (interruptMode != 0)
reportInterruptAfterWait(interruptMode);
return !timedout;
}

@Override
public final boolean await(long time, TimeUnit unit)
throws InterruptedException {
long nanosTimeout = unit.toNanos(time);
if (Thread.interrupted())
throw new InterruptedException();
Node node = addConditionWaiter();
int savedState = fullyRelease(node);
final long deadline = System.nanoTime() + nanosTimeout;
boolean timedout = false;
int interruptMode = 0;
while (!isOnSyncQueue(node)) {
if (nanosTimeout <= 0L) {
timedout = transferAfterCancelledWait(node);
break;
}
if (nanosTimeout >= spinForTimeoutThreshold)
LockSupport.parkNanos(this, nanosTimeout);
if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
break;
nanosTimeout = deadline - System.nanoTime();
}
if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
interruptMode = REINTERRUPT;
if (node.nextWaiter != null)
unlinkCancelledWaiters();
if (interruptMode != 0)
reportInterruptAfterWait(interruptMode);
return !timedout;
}

final boolean isOwnedBy(BacAQS sync) {
return sync == BacAQS.this;
}

protected final boolean hasWaiters() {
if (!isHeldExclusively())
throw new IllegalMonitorStateException();
for (Node w = firstWaiter; w != null; w = w.nextWaiter) {
if (w.waitStatus == Node.CONDITION)
return true;
}
return false;
}

protected final int getWaitQueueLength() {
if (!isHeldExclusively())
throw new IllegalMonitorStateException();
int n = 0;
for (Node w = firstWaiter; w != null; w = w.nextWaiter) {
if (w.waitStatus == Node.CONDITION)
++n;
}
return n;
}

protected final Collection getWaitingThreads() {
if (!isHeldExclusively())
throw new IllegalMonitorStateException();
ArrayList list = new ArrayList();
for (Node w = firstWaiter; w != null; w = w.nextWaiter) {
if (w.waitStatus == Node.CONDITION) {
Thread t = w.thread;
if (t != null)
list.add(t);
}
}
return list;
}
}
// 反射获取 sun公司定义操作native本地方法的不安全类Unsafe。
private static final Unsafe unsafe = Unsafe.getUnsafe();
private static final long stateOffset;
private static final long headOffset;
private static final long tailOffset;
private static final long waitStatusOffset;
private static final long nextOffset;

static {
try {
//获取属性state 在类 BacAQS 的内存地址偏移量
stateOffset = unsafe.objectFieldOffset
(BacAQS.class.getDeclaredField("state"));
headOffset = unsafe.objectFieldOffset
(BacAQS.class.getDeclaredField("head"));
tailOffset = unsafe.objectFieldOffset
(BacAQS.class.getDeclaredField("tail"));
waitStatusOffset = unsafe.objectFieldOffset
(Node.class.getDeclaredField("waitStatus"));
nextOffset = unsafe.objectFieldOffset
(Node.class.getDeclaredField("next"));

} catch (Exception ex) { throw new Error(ex); }
}
//native原子操作,比较和替换 AQS队列的 头 节点
private final boolean compareAndSetHead(Node update) {
return unsafe.compareAndSwapObject(this, headOffset, null, update);
}
//native原子操作,比较和替换 AQS队列的 尾 节点
private final boolean compareAndSetTail(Node expect, Node update) {
return unsafe.compareAndSwapObject(this, tailOffset, expect, update);
}
//native原子操作,比较和替换 节点的 等待状态
private static final boolean compareAndSetWaitStatus(Node node,
int expect,
int update) {
return unsafe.compareAndSwapInt(node, waitStatusOffset,
expect, update);
}
//native原子操作,比较和替换 节点的 下一个节点。
private static final boolean compareAndSetNext(Node node,
Node expect,
Node update) {
return unsafe.compareAndSwapObject(node, nextOffset, expect, update);
}
}
 
   

来一张示意图:

JUC AQS ReentrantLock源码分析_第1张图片

 

哈,分享就先到这了。

说点励志的话: 目标阿里P6,只去更强的公司,不为更高的工资。让自己变强,成为技术大牛。加油



转载于:https://www.cnblogs.com/itbac/p/11404351.html

你可能感兴趣的:(java,人工智能,大数据)