RocketMQ消息消费源码分析(一消费者的启动、消息拉取)

消息消费方式
Consumer分为两种,PullConsumer和PushConsumer。从名字就可以看出一种是拉取的方式,一种是主动Push的方式。具体实现如下:

PullConsumer,由用户主动调用pull方法来获取消息,没有则返回
PushConsumer,在启动后,Consumer客户端会主动循环发送Pull请求到broker,如果没有消息,broker会把请求放入等待队列,新消息到达后返回response。
所以本质上,两种方式都是通过客户端Pull来实现的。

大部分的业务场合下业界用的比较多的是push模式,一句话你没有特殊需求就用push,push模式可以达到准实时的消息推送
那什么时候可以用pull模式呢?比如在高并发的场景下,消费端的性能可能会达到瓶颈的情况下,消费端可以采用pull模式,消费端根据自身消费情况去拉取,虽然push模式在消息拉取的过程中也会有流控(当前ProcessQueue队列有1000条消息还没有消费或者当前ProcessQueue中最大偏移量和最小偏移量超过2000将会触发流控,流控的策略就是延迟50ms再拉取消息),但是这个值在实际情况下,可能每台机器的性能都不太一样,会不好控制。

消费模式
Consumer有两种消费模式,broadcast和Cluster,由初始化consumer时设置。对于消费同一个topic的多个consumer,可以通过设置同一个consumerGroup来标识属于同一个消费集群。

在Broadcast模式下,消息会发送给group内所有consumer。
在Cluster模式下,每条消息只会发送给group内的一个consumer,但是集群模式的支持消费失败重发,从而保证消息一定被消费。

消息消费Demo:

public class Consumer {
    public static void main(String[] args) throws Exception{
        DefaultMQPushConsumer consumer = new DefaultMQPushConsumer("test_quick_consumer_name");
        consumer.setNamesrvAddr(Const.NAMESRV_ADDR);
        consumer.setConsumeFromWhere(ConsumeFromWhere.CONSUME_FROM_LAST_OFFSET);
        consumer.subscribe("test_quick_topic","*");
        consumer.registerMessageListener(new MessageListenerConcurrently() {
            @Override
            public ConsumeConcurrentlyStatus consumeMessage(List msgs, ConsumeConcurrentlyContext consumeConcurrentlyContext) {
                MessageExt me = msgs.get(0);
                try {
                    String topic = me.getTopic();
                    String tags = me.getTags();
                    String keys = me.getKeys();
                    String msgBody = new String(me.getBody(), RemotingHelper.DEFAULT_CHARSET);
                    System.out.println("topic: "+topic+" ,tags: "+tags+",keys: "+keys+",body: "+ msgBody);


                }catch (Exception e){
                    e.printStackTrace();
                    //记录重试次数
                    int recousumeTimes = me.getReconsumeTimes();

                    if(recousumeTimes == 3){
                        //  记录日志......
                        // 做补偿处理
                        return ConsumeConcurrentlyStatus.CONSUME_SUCCESS;
                    }
                    return ConsumeConcurrentlyStatus.RECONSUME_LATER;
                }
                return ConsumeConcurrentlyStatus.CONSUME_SUCCESS;
            }
        });

        consumer.start();
        System.out.println("consumer start ................");
    }
}

 

RocketMQ消息消费源码分析(一消费者的启动、消息拉取)_第1张图片

 

消息消费者具体实现类:org.apache.rocketmq.client.impl.consumer.DefaultMQPushConsumerImpl。

先看下DefaultMQPushConsumer的重要参数

//消费组
private String consumerGroup;
//消费端模式,默认为集群模式,还有一种广播模式
private MessageModel messageModel = MessageModel.CLUSTERING;
//根据消费进度从broker拉取不到消息时采取的策略
//1.CONSUME_FROM_LAST_OFFSET 最大偏移量开始
//2.CONSUME_FROM_FIRST_OFFSET 最小偏移量开始
//3.CONSUME_FROM_TIMESTAMP 从消费者启动时间戳开始
private ConsumeFromWhere consumeFromWhere = ConsumeFromWhere.CONSUME_FROM_LAST_OFFSET;
//集群模式下消息队列负载策略
private AllocateMessageQueueStrategy allocateMessageQueueStrategy;

//消息过滤关系
private Map subscription = new HashMap();

   //消息消费监听器
    private MessageListener messageListener;

    //消息消费进度存储器
    private OffsetStore offsetStore;

    //消费线程最小线程数
    private int consumeThreadMin = 20;

    //消费线程最大线程数,因为消费线程池用的是无界队列,所以这个参数用不上,原因请参考线程池原理
    private int consumeThreadMax = 64;

    //动态调整线程数量的阀值
    private long adjustThreadPoolNumsThreshold = 100000;

    //并发消费时拉取消息前会有流控,会判断处理队列中最大偏移量和最小偏移量的跨度,不能大于2000
    private int consumeConcurrentlyMaxSpan = 2000;

    //push模式下任务拉取的时间间隔
    private long pullInterval = 0;

    //每次消费者实际消费的数量,不是从broker端拉取的数量
    private int consumeMessageBatchMaxSize = 1;

    //从broker端拉取的数量
    private int pullBatchSize = 32;

    //是否每次拉取之后都跟新订阅关系
    private boolean postSubscriptionWhenPull = false;

   //消息最大消费重试次数
    private int maxReconsumeTimes = -1;

    //延迟将该消息提交到消费者的线程池等待时间,默认1s
    private long suspendCurrentQueueTimeMillis = 1000;

    //消费超时时间,15分钟
    private long consumeTimeout = 15;

消费者的启动代码入口DefaultPushConsumerImpl.start()方法

public synchronized void start() throws MQClientException {
        switch (this.serviceState) {
            case CREATE_JUST:
                this.serviceState = ServiceState.START_FAILED;
                //1、基本的参数检查,group name不能是DEFAULT_CONSUMER
                this.checkConfig();
                //2、将DefaultMQPushConsumer的订阅信息copy到RebalanceService中
                //如果是cluster模式,如果订阅了topic,则自动订阅%RETRY%topic
                this.copySubscription();
                //3、修改InstanceName参数值为PID
                if (this.defaultMQPushConsumer.getMessageModel() == MessageModel.CLUSTERING) {
                    this.defaultMQPushConsumer.changeInstanceNameToPID();
                }
                //4、新建一个MQClientInstance,客户端管理类,所有的i/o类操作由它管理
                //缓存客户端和topic信息,各种service
                //一个进程只有一个实例
                this.mQClientFactory = MQClientManager.getInstance().getAndCreateMQClientInstance(this.defaultMQPushConsumer, this.rpcHook);
                this.rebalanceImpl.setConsumerGroup(this.defaultMQPushConsumer.getConsumerGroup());
                this.rebalanceImpl.setMessageModel(this.defaultMQPushConsumer.getMessageModel());
                //5、Queue分配策略,默认AVG
                this.rebalanceImpl.setAllocateMessageQueueStrategy(this.defaultMQPushConsumer.getAllocateMessageQueueStrategy());
                this.rebalanceImpl.setmQClientFactory(this.mQClientFactory);
                //6、PullRequest封装实现类,封装了和broker的通信接口
                this.pullAPIWrapper = new PullAPIWrapper(
                    mQClientFactory,
                    this.defaultMQPushConsumer.getConsumerGroup(), isUnitMode());
                //7、消息被客户端过滤时会回调hook
                this.pullAPIWrapper.registerFilterMessageHook(filterMessageHookList);
                //8、consumer客户端消费offset持久化接口
                if (this.defaultMQPushConsumer.getOffsetStore() != null) {
                    this.offsetStore = this.defaultMQPushConsumer.getOffsetStore();
                } else {
                    switch (this.defaultMQPushConsumer.getMessageModel()) {
                        case BROADCASTING://广播消息本地持久化offset
                            this.offsetStore = new LocalFileOffsetStore(this.mQClientFactory, this.defaultMQPushConsumer.getConsumerGroup());
                            break;
                        case CLUSTERING://集群模式持久化到broker
                            this.offsetStore = new RemoteBrokerOffsetStore(this.mQClientFactory, this.defaultMQPushConsumer.getConsumerGroup());
                            break;
                        default:
                            break;
                    }
                    this.defaultMQPushConsumer.setOffsetStore(this.offsetStore);
                }
                //9、如果是本地持久化会从文件中load
                this.offsetStore.load();
                //10、消费服务,顺序和并发消息逻辑不同,接收消息并调用listener消费,处理消费结果
                if (this.getMessageListenerInner() instanceof MessageListenerOrderly) {
                    this.consumeOrderly = true;
                    this.consumeMessageService =
                        new ConsumeMessageOrderlyService(this, (MessageListenerOrderly) this.getMessageListenerInner());
                } else if (this.getMessageListenerInner() instanceof MessageListenerConcurrently) {
                    this.consumeOrderly = false;
                    this.consumeMessageService =
                        new ConsumeMessageConcurrentlyService(this, (MessageListenerConcurrently) this.getMessageListenerInner());
                }
                //11、只启动了清理等待处理消息服务
                this.consumeMessageService.start();
                //12、注册(缓存)consumer,保证CID单例
                boolean registerOK = mQClientFactory.registerConsumer(this.defaultMQPushConsumer.getConsumerGroup(), this);
                if (!registerOK) {
                    this.serviceState = ServiceState.CREATE_JUST;
                    this.consumeMessageService.shutdown();
                    throw new MQClientException("The consumer group[" + this.defaultMQPushConsumer.getConsumerGroup()
                        + "] has been created before, specify another name please." + FAQUrl.suggestTodo(FAQUrl.GROUP_NAME_DUPLICATE_URL),
                        null);
                }
                //13、启动MQClientInstance,会启动PullMessageService和RebalanceService
                mQClientFactory.start();
                log.info("the consumer [{}] start OK.", this.defaultMQPushConsumer.getConsumerGroup());
                this.serviceState = ServiceState.RUNNING;
                break;
            case RUNNING:
            case START_FAILED:
            case SHUTDOWN_ALREADY:
                ...
                ...
            default:
                break;
        }
        //14、从NameServer更新topic路由和订阅信息
        this.updateTopicSubscribeInfoWhenSubscriptionChanged();
        this.mQClientFactory.checkClientInBroker();//如果是SQL过滤,检查broker是否支持SQL过滤
        //15、发送心跳,同步consumer配置到broker,同步FilterClass到FilterServer(PushConsumer)
        this.mQClientFactory.sendHeartbeatToAllBrokerWithLock();
        //16、做一次re-balance
        this.mQClientFactory.rebalanceImmediately();
    }

checkConfig(),检查配置信息,主要检查消费者组(consumeGroup)、消息消费方式(messageModel)、消息消费开始偏移量(consumeFromWhere)、消息队列分配算法(AllocateMessageQueueStrategy)、订阅消息主题(Map

 

copySubscription().加工订阅信息,将Map,同时,如果消息消费模式为集群模式,还需要为该消费组创建一个重试主题。

第4步,初始化一个MQClientInstance,这个实例在一个JVM中消费者和生产者共用,MQClientManager中维护了一个factoryTable,类型为ConcurrentMap,保存了clintId和MQClientInstance。

第5步,对于同一个group内的consumer,RebalanceImpl负责分配具体每个consumer应该消费哪些queue上的消息,以达到负载均衡的目的。Rebalance支持多种分配策略,比如平均分配、一致性Hash等(具体参考AllocateMessageQueueStrategy实现类)。默认采用平均分配策略(AVG)。

比如现在有4个消息队列(q1,q2,q3,q4),3个消费者(m1,m2,m3),那么消费者与消息队列的对应关系是什么呢?我们按照一个轮询算法来表示,  m1(q1,q4)  m2(q2) m3(q3),如果此时q2消息队列失效(所在的broker挂了),那么消息队列的消费就需要重新分配,RebalanceImpl 就是干这事的,该类的调用轨迹如下:(MQClientInstance start --> (this.rebalanceService.start()) --->  RebalanceService.run(this.mqClientFactory.doRebalance()) ---> MQConsumerInner.doRebalance(DefaultMQPushConsumerImpl)  --->RebalanceImpl.doRebalance。

在这里着重说明一点:消息队列数量与消费者关系:1个消费者可以消费多个队列,但1个消息队列只会被一个消费者消费;如果消费者数量大于消息队列数量,则有的消费者会消费不到消息(集群模式)。

MQClientInstance 

下面看一下this.mQClientFactory =MQClientManager.getInstance().getAndCreateMQClientInstance(this.defaultMQPushConsumer, this.rpcHook);

public MQClientInstance getAndCreateMQClientInstance(final ClientConfig clientConfig, RPCHook rpcHook) {
        String clientId = clientConfig.buildMQClientId();
        MQClientInstance instance = this.factoryTable.get(clientId);
        if (null == instance) {
            instance =
                new MQClientInstance(clientConfig.cloneClientConfig(),
                    this.factoryIndexGenerator.getAndIncrement(), clientId, rpcHook);
            MQClientInstance prev = this.factoryTable.putIfAbsent(clientId, instance);
            if (prev != null) {
                instance = prev;
                log.warn("Returned Previous MQClientInstance for clientId:[{}]", clientId);
            } else {
                log.info("Created new MQClientInstance for clientId:[{}]", clientId);
            }
        }
 
        return instance;
    }
public String buildMQClientId() {
        StringBuilder sb = new StringBuilder();
        sb.append(this.getClientIP());
        sb.append("@");
        sb.append(this.getInstanceName());
        if (!UtilAll.isBlank(this.unitName)) {
            sb.append("@");
            sb.append(this.unitName);
        }
        return sb.toString();
    }
private String clientIP = RemotingUtil.getLocalAddress();

从这段代码可以看成,一个客户端 IP@InstanceName 只会持有一个 MQClientInstance 对象,MQClientInstance 无论是消费者还是生产者,都在应用程序这一端。

有了这一层认识,我们就重点关注一下该类的属性:

ClientConfig clientConfig
配置信息。
int instanceIndex
MQClientInstance在同一台机器上的创建序号。
String clientId
客户端id。
ConcurrentMap producerTable
生产组--》消息生产者,也就是在应用程序一端,每个生产者组在同一台应用服务器只需要初始化一个生产者实例。
ConcurrentMap consumerTable
消费组--》消费者,也就是在应用程序一 端  ,每个消费组,在同一台应用服务器只需要初始化一个消费者即可。
ConcurrentMap adminExtTable
主要是处理运维命令的。
NettyClientConfig nettyClientConfig
网络配置。
MQClientAPIImpl mQClientAPIImpl
MQ 客户端实现类。
MQAdminImpl mQAdminImpl
MQ 管理命令实现类。
ConcurrentMap topicRouteTable
topic 路由信息。
ConcurrentMap> brokerAddrTable
broker信息,这些信息存在于NameServer,但缓存在本地客户端,供生产者、消费者共同使用。
ClientRemotingProcessor clientRemotingProcessor
客户端命令处理器。
PullMessageService pullMessageService
消息拉取线程,一个MQClientInstance 只会启动一个消息拉取线程。
RebalanceService rebalanceService
队列动态负载线程。
DefaultMQProducer defaultMQProducer
默认的消息生产者。
ConsumerStatsManager consumerStatsManager
消费端统计。
AtomicLong sendHeartbeatTimesTotal = new AtomicLong(0)
心跳包发送次数。
ServiceState serviceState = ServiceState.CREATE_JUST
状态。
MQClientInstance mq客户端实例,每台应用服务器将持有一个MQClientInstance对象,供该应用服务器的消费者,生产者使用。该类是消费者,生产者网络处理的核心类。

然后回到DefaultPushConsumerImpl.start()方法中的this.mQClientFactory.start();启动MQClientInstance 

public void start() throws MQClientException {
        synchronized(this) {
            switch(this.serviceState) {
            case CREATE_JUST:
                this.serviceState = ServiceState.START_FAILED;
                if (null == this.clientConfig.getNamesrvAddr()) {
                    this.mQClientAPIImpl.fetchNameServerAddr();
                }
                
                this.mQClientAPIImpl.start();
                // 1、Start various schedule tasks
                this.startScheduledTask();
                // 2、Start pull service,开始处理PullRequest
                this.pullMessageService.start();
                // 3、Start rebalance service
                this.rebalanceService.start();
                // 4、Start push service,consumer预留的producer,发送要求重新的消息
                this.defaultMQProducer.getDefaultMQProducerImpl().start(false);
                this.log.info("the client factory [{}] start OK", this.clientId);
                this.serviceState = ServiceState.RUNNING;
            case RUNNING:
            case SHUTDOWN_ALREADY:
            default:
                return;
            case START_FAILED:
                throw new MQClientException("The Factory object[" + this.getClientId() + "] has been created before, and failed.", (Throwable)null);
            }
        }
    }

1.this.startScheduledTask();启动了定时任务,看下启动了哪里定时任务

private void startScheduledTask() {
        //每隔2分钟尝试获取一次NameServer地址
        if (null == this.clientConfig.getNamesrvAddr()) {
            this.scheduledExecutorService.scheduleAtFixedRate(new Runnable() {
                public void run() {
                    try {
                        MQClientInstance.this.mQClientAPIImpl.fetchNameServerAddr();
                    } catch (Exception var2) {
                        MQClientInstance.this.log.error("ScheduledTask fetchNameServerAddr exception", var2);
                    }

                }
            }, 10000L, 120000L, TimeUnit.MILLISECONDS);
        }
        每隔30S尝试更新主题路由信息
        this.scheduledExecutorService.scheduleAtFixedRate(new Runnable() {
            public void run() {
                try {
                    MQClientInstance.this.updateTopicRouteInfoFromNameServer();
                } catch (Exception var2) {
                    MQClientInstance.this.log.error("ScheduledTask updateTopicRouteInfoFromNameServer exception", var2);
                }

            }
        }, 10L, (long)this.clientConfig.getPollNameServerInterval(), TimeUnit.MILLISECONDS);
        //每隔30S 进行Broker心跳检测
        this.scheduledExecutorService.scheduleAtFixedRate(new Runnable() {
            public void run() {
                try {
                    MQClientInstance.this.cleanOfflineBroker();
                    MQClientInstance.this.sendHeartbeatToAllBrokerWithLock();
                } catch (Exception var2) {
                    MQClientInstance.this.log.error("ScheduledTask sendHeartbeatToAllBroker exception", var2);
                }

            }
        }, 1000L, (long)this.clientConfig.getHeartbeatBrokerInterval(), TimeUnit.MILLISECONDS);
        //默认每隔5秒持久化ConsumeOffset
        this.scheduledExecutorService.scheduleAtFixedRate(new Runnable() {
            public void run() {
                try {
                    MQClientInstance.this.persistAllConsumerOffset();
                } catch (Exception var2) {
                    MQClientInstance.this.log.error("ScheduledTask persistAllConsumerOffset exception", var2);
                }

            }
        }, 10000L, (long)this.clientConfig.getPersistConsumerOffsetInterval(), TimeUnit.MILLISECONDS);
        //默认每隔1S检查线程池适配
        this.scheduledExecutorService.scheduleAtFixedRate(new Runnable() {
            public void run() {
                try {
                    MQClientInstance.this.adjustThreadPool();
                } catch (Exception var2) {
                    MQClientInstance.this.log.error("ScheduledTask adjustThreadPool exception", var2);
                }

            }
        }, 1L, 1L, TimeUnit.MINUTES);
    }

2.this.pullMessageService.start();

启动了pullMessageService服务线程,这个服务线程的作用就是拉取消息,我们去看下他的run方法:

@Override
public void run() {
    while (!this.isStopped()) {
        try {
            //从LinkedBlockingQueue中拉取pullRequest
            PullRequest pullRequest = this.pullRequestQueue.take();
            this.pullMessage(pullRequest);
        } catch (InterruptedException ignored) {
        } catch (Exception e) {
            log.error("Pull Message Service Run Method exception", e);
        }
    }

从pullRequestQueue中获取pullRequest,如果pullRequestQueue为空,那么线程将阻塞直到有pullRequest放入,那么pullRequest是什么时候放入的呢,有2个地方:

public void executePullRequestLater(final PullRequest pullRequest, final long timeDelay) {
        if (!isStopped()) {
            this.scheduledExecutorService.schedule(new Runnable() {
                @Override
                public void run() {
                    PullMessageService.this.executePullRequestImmediately(pullRequest);
                }
            }, timeDelay, TimeUnit.MILLISECONDS);
        } else {
            log.warn("PullMessageServiceScheduledThread has shutdown");
        }
    }

    public void executePullRequestImmediately(final PullRequest pullRequest) {
        try {
            this.pullRequestQueue.put(pullRequest);
        } catch (InterruptedException e) {
            log.error("executePullRequestImmediately pullRequestQueue.put", e);
        }
    }

executePullRequestImmediately 和 executePullRequestLater,一个是立即放入pullRequest,一个是延迟放入pullRequest,什么时候需要延迟放入pullRequest呢,都是出现异常的情况下,什么时候立即放入呢,我们看下这个方法的调用链:
 

avatar

有3个地方调用,去掉延迟调用的那一处,还有两处

  • 第一个是RebalancePushImpl#dispatchPullRequest中创建,这个是消息队列的负载均衡,- 第二个是消息拉取完成之后,又重新把pullRequest放入pullRequestQueue中

我们看下PullRequest类

public class PullRequest {
    private String consumerGroup;
    private MessageQueue messageQueue;
    private ProcessQueue processQueue;
    private long nextOffset;
    private boolean lockedFirst = false;
    ...
}

consumerGroup 消费组
messageQueue 消费队列
ProcessQueue 承载拉取到的消息的对象
nextOffset 下次拉取消息的点位
如果从pullRequestQueue中take到pullRequest,那么执行this.pullMessage(pullRequest);

private void pullMessage(PullRequest pullRequest) {
        MQConsumerInner consumer = this.mQClientFactory.selectConsumer(pullRequest.getConsumerGroup());
        if (consumer != null) {
            DefaultMQPushConsumerImpl impl = (DefaultMQPushConsumerImpl)consumer;
            impl.pullMessage(pullRequest);
        } else {
            this.log.warn("No matched consumer for the PullRequest {}, drop it", pullRequest);
        }

    }

这里的consumer直接强制转换成了DefaultMQPushConsumerImpl,为什么呢,看来这个拉取服务只为push模式服务,那么pull模式呢,TODO一下,回头看看,进入DefaultMQPushConsumerImpl.pullMessage方法,这个方法就是整个消息拉取的关键方法

public void pullMessage(final PullRequest pullRequest) {
    //1.获取处理队列ProcessQueue
    final ProcessQueue processQueue = pullRequest.getProcessQueue();
    //2.如果dropped=true,那么return
    if (processQueue.isDropped()) {
        log.info("the pull request[{}] is dropped.", pullRequest.toString());
        return;
    }
    //3.然后更新该消息队列最后一次拉取的时间
    pullRequest.getProcessQueue().setLastPullTimestamp(System.currentTimeMillis());

    try {
        //4.如果消费者 服务状态不为ServiceState.RUNNING,默认延迟3秒再执行
        this.makeSureStateOK();
    } catch (MQClientException e) {
        log.warn("pullMessage exception, consumer state not ok", e);
        //4.1 这个方法在上文分析过,延迟执行放入pullRequest操作
        this.executePullRequestLater(pullRequest, PULL_TIME_DELAY_MILLS_WHEN_EXCEPTION);
        return;
    }
    //5.是否暂停,如果有那么延迟3s执行,目前我没有发现哪里有调用暂停,可能是为以后预留
    if (this.isPause()) {
        log.warn("consumer was paused, execute pull request later. instanceName={}, group={}", this.defaultMQPushConsumer.getInstanceName(), this.defaultMQPushConsumer.getConsumerGroup());
        this.executePullRequestLater(pullRequest, PULL_TIME_DELAY_MILLS_WHEN_SUSPEND);
        return;
    }

消费进度,消费等等功能的底层核心数据保存都是有ProcessQueue提供,类似于消息快照的意思,主要是因为在消息拉取到的时候,会把消息存放在其中。

这里想说一下很多地方都用到了状态,是否停止,暂停这样的属性,一般都是用volatile去修饰,在不同线程中起到通信的作用。

//6.消息的拉取会有流量控制,当processQueue没有消费的消息的数量达到(默认1000个)会触发流量控制
long cachedMessageCount = processQueue.getMsgCount().get();
long cachedMessageSizeInMiB = processQueue.getMsgSize().get() / (1024 * 1024);

if (cachedMessageCount > this.defaultMQPushConsumer.getPullThresholdForQueue()) {
    //PullRequest延迟50ms后,放入LinkedBlockQueue中,每触发1000次打印一次警告
    this.executePullRequestLater(pullRequest, PULL_TIME_DELAY_MILLS_WHEN_FLOW_CONTROL);
    if ((queueFlowControlTimes++ % 1000) == 0) {
        log.warn(
            "the cached message count exceeds the threshold {}, so do flow control, minOffset={}, maxOffset={}, count={}, size={} MiB, pullRequest={}, flowControlTimes={}",
            this.defaultMQPushConsumer.getPullThresholdForQueue(), processQueue.getMsgTreeMap().firstKey(), processQueue.getMsgTreeMap().lastKey(), cachedMessageCount, cachedMessageSizeInMiB, pullRequest, queueFlowControlTimes);
    }
    return;
}
//7.当processQueue中没有消费的消息体总大小 大于(默认100m)时,触发流控,
if (cachedMessageSizeInMiB > this.defaultMQPushConsumer.getPullThresholdSizeForQueue()) {
    this.executePullRequestLater(pullRequest, PULL_TIME_DELAY_MILLS_WHEN_FLOW_CONTROL);
    if ((queueFlowControlTimes++ % 1000) == 0) {
        log.warn(
                "the cached message size exceeds the threshold {} MiB, so do flow control, minOffset={}, maxOffset={}, count={}, size={} MiB, pullRequest={}, flowControlTimes={}",
                this.defaultMQPushConsumer.getPullThresholdSizeForQueue(), processQueue.getMsgTreeMap().firstKey(), processQueue.getMsgTreeMap().lastKey(), cachedMessageCount, cachedMessageSizeInMiB, pullRequest, queueFlowControlTimes);
    }
    return;
}
//8.如果不是顺序消息,判断processQueue中消息的最大间距,就是消息的最大位置和最小位置的差值如果大于默认值2000,那么触发流控
if (!this.consumeOrderly) {
    if (processQueue.getMaxSpan() > this.defaultMQPushConsumer.getConsumeConcurrentlyMaxSpan()) {
        this.executePullRequestLater(pullRequest, PULL_TIME_DELAY_MILLS_WHEN_FLOW_CONTROL);
        if ((queueMaxSpanFlowControlTimes++ % 1000) == 0) {
            log.warn(
                "the queue's messages, span too long, so do flow control, minOffset={}, maxOffset={}, maxSpan={}, pullRequest={}, flowControlTimes={}",
                processQueue.getMsgTreeMap().firstKey(), processQueue.getMsgTreeMap().lastKey(), processQueue.getMaxSpan(),
                pullRequest, queueMaxSpanFlowControlTimes);
        }
        return;
    }

上面的6,7,8步都在进行流控判断,防止消费端压力太大,未消费消息太多

//9.获取主题订阅信息
final SubscriptionData subscriptionData = this.rebalanceImpl.getSubscriptionInner().get(pullRequest.getMessageQueue().getTopic());

这里通过pullRequest的messageQueue获取topic,再从rebalanceImpl中通过topic获取SubscriptionData,作用是去broker端拉取消息的时候,broker端要知道拉取哪个topic下的信息,过滤tag是什么

//10.new一个回调方法,这个回调方法在broker端拉取完消息将调用 
PullCallback pullCallback = new PullCallback() {

这一步的回调方法后文再分析,先过

//11.如果是集群消费模式,从内存中获取MessageQueue的commitlog偏移量
boolean commitOffsetEnable = false;
long commitOffsetValue = 0L;
if (MessageModel.CLUSTERING == this.defaultMQPushConsumer.getMessageModel()) {
    commitOffsetValue = this.offsetStore.readOffset(pullRequest.getMessageQueue(), ReadOffsetType.READ_FROM_MEMORY);
    if (commitOffsetValue > 0) {
        commitOffsetEnable = true;
    

从内存中获取MessageQueue的commitLog偏移量,为什么是从内存中获取呢,集群模式消费进度不是存储在broker端的吗?这个问题我们留着,等我们分析消费进度机制的时候再来看

String subExpression = null;
boolean classFilter = false;
//12.这里又去获取了一遍SubscriptionData,上面不是获取了吗,没有必要的感觉
SubscriptionData sd = this.rebalanceImpl.getSubscriptionInner().get(pullRequest.getMessageQueue().getTopic());
if (sd != null) {
    if (this.defaultMQPushConsumer.isPostSubscriptionWhenPull() && !sd.isClassFilterMode()) {
        //过滤信息
        subExpression = sd.getSubString();
    }
    //是否是类过滤模式,现在已经不建议用类过滤模式了,5.0版本之后将弃用
    classFilter = sd.isClassFilterMode();
}
//13.构建拉取消息系统Flag: 是否支持comitOffset,suspend,subExpression,classFilter
int sysFlag = PullSysFlag.buildSysFlag(
    commitOffsetEnable, // commitOffset
    true, // suspend
    subExpression != null, // subscription
    classFilter // class filter
);

 

//14.调用pullAPI方法来拉取消息
this.pullAPIWrapper.pullKernelImpl(
    pullRequest.getMessageQueue(),  // 消息消费队列
    subExpression,//消息订阅子模式subscribe( topicName, "模式")
    subscriptionData.getExpressionType(),
    subscriptionData.getSubVersion(),// 版本
    pullRequest.getNextOffset(),//拉取位置
    this.defaultMQPushConsumer.getPullBatchSize(),//从broker端拉取多少消息
    sysFlag,// 系统标记,FLAG_COMMIT_OFFSET FLAG_SUSPEND FLAG_SUBSCRIPTION FLAG_CLASS_FILTER
    commitOffsetValue,// 当前消息队列 commitlog日志中当前的最新偏移量(内存中)
    BROKER_SUSPEND_MAX_TIME_MILLIS, // 允许的broker 暂停的时间,毫秒为单位,默认为15s
    CONSUMER_TIMEOUT_MILLIS_WHEN_SUSPEND, // 超时时间,默认为30s
    CommunicationMode.ASYNC, // 超时时间,默认为30s
    pullCallback  // pull 回调
);

进入PullAPIWrapper#pullKernelImpl,看下具体的拉取实现

//15.查找Broker信息
FindBrokerResult findBrokerResult =
    this.mQClientFactory.findBrokerAddressInSubscribe(mq.getBrokerName(),
        this.recalculatePullFromWhichNode(mq), false);
//16.如果没有找到对应的broker,那么重新从nameServer拉取信息
if (null == findBrokerResult) {
    this.mQClientFactory.updateTopicRouteInfoFromNameServer(mq.getTopic());
    findBrokerResult =
        this.mQClientFactory.findBrokerAddressInSubscribe(mq.getBrokerName(),
            this.recalculatePullFromWhichNode(mq), false);
}

根据brokerName,brokerId从mQClientFactory中查找Broker信息,最后调用MQClientAPIImpl#pullMessage去broker端拉取消息,MQClientAPIImpl封装了网络通信的一些API,我们找到broker端处理拉取请求的入口,根据RequestCode.PULL_MESSAGE搜索,找到PullMessageProcessor#processRequest方法:

final GetMessageResult getMessageResult =
            this.brokerController.getMessageStore().getMessage(requestHeader.getConsumerGroup(), requestHeader.getTopic(),
                requestHeader.getQueueId(), requestHeader.getQueueOffset(), requestHeader.getMaxMsgNums(), messageFilter);

这个方法调用了MessageStore.getMessage()获取消息,方法的参数的含义:
String group, 消息组名称
String topic, topic名称
int queueId, 队列ID,就是ConsumerQueue的ID
long offset, 待拉取偏移量
int maxMsgNums, 最大拉取数量
MessageFilter messageFilter 消息过滤器

GetMessageStatus status = GetMessageStatus.NO_MESSAGE_IN_QUEUE;
//待查找的队列的偏移量
long nextBeginOffset = offset;
//当前队列最小偏移量
long minOffset = 0;
//当前队列最大偏移量
long maxOffset = 0;
GetMessageResult getResult = new GetMessageResult();
//当前commitLog最大偏移量
final long maxOffsetPy = this.commitLog.getMaxOffset();
//根据topicId和queueId获取consumeQueue
ConsumeQueue consumeQueue = findConsumeQueue(topic, queueId);

minOffset = consumeQueue.getMinOffsetInQueue();
maxOffset = consumeQueue.getMaxOffsetInQueue();
//当前队列没有消息
if (maxOffset == 0) {
    status = GetMessageStatus.NO_MESSAGE_IN_QUEUE;
    nextBeginOffset = nextOffsetCorrection(offset, 0);
} else if (offset < minOffset) {
    status = GetMessageStatus.OFFSET_TOO_SMALL;
    nextBeginOffset = nextOffsetCorrection(offset, minOffset);
} else if (offset == maxOffset) {
    status = GetMessageStatus.OFFSET_OVERFLOW_ONE;
    nextBeginOffset = nextOffsetCorrection(offset, offset);
} else if (offset > maxOffset) {
    status = GetMessageStatus.OFFSET_OVERFLOW_BADLY;
    if (0 == minOffset) {
        nextBeginOffset = nextOffsetCorrection(offset, minOffset);
    } else {
        nextBeginOffset = nextOffsetCorrection(offset, maxOffset);
    }
}
  • maxOffset == 0
  • offset < minOffset
  • offset == maxOffset
  • offset > maxOffset
    这四种情况下都是异常情况,只有minOffset <= offset <= maxOffset情况下才是正常,从commitLog获取到数据之后,返回
getResult.setStatus(status);
getResult.setNextBeginOffset(nextBeginOffset);
getResult.setMaxOffset(maxOffset);
getResult.setMinOffset(minOffset);

这里minOffset和maxOffset都是broker端的consumeQueue中的最大最小值,现在已经从commitLog中拿到了需要消费的消息,回到PullMessageProcessor#processRequest中

if (getMessageResult.isSuggestPullingFromSlave()) {
    responseHeader.setSuggestWhichBrokerId(subscriptionGroupConfig.getWhichBrokerWhenConsumeSlowly());
} else {
    responseHeader.setSuggestWhichBrokerId(MixAll.MASTER_ID);
}

如果从节点数据包含下一次拉取偏移量,设置下一次拉取任务的brokerId,如果commitLog标记可用并且当前节点为主节点,那么更新消息的消费进度,关于消费进度后文会单独分析
服务端消息拉取处理完毕之后,我们回到consumer端,我们进入MQClientAPIImpl#processPullResponse

PullStatus pullStatus = PullStatus.NO_NEW_MSG;
switch (response.getCode()) {
    case ResponseCode.SUCCESS:
        pullStatus = PullStatus.FOUND;
        break;
    case ResponseCode.PULL_NOT_FOUND:
        pullStatus = PullStatus.NO_NEW_MSG;
        break;
    case ResponseCode.PULL_RETRY_IMMEDIATELY:
        pullStatus = PullStatus.NO_MATCHED_MSG;
        break;
    case ResponseCode.PULL_OFFSET_MOVED:
        pullStatus = PullStatus.OFFSET_ILLEGAL;
        break;
    default:
        throw new MQBrokerException(response.getCode(), response.getRemark());
}

根据服务端返回的结果code码来处理拉取结果,组装PullResultExt

return new PullResultExt(pullStatus, responseHeader.getNextBeginOffset(), responseHeader.getMinOffset(),
            responseHeader.getMaxOffset(), null, responseHeader.getSuggestWhichBrokerId(), response.getBody());

现在调用pullCallback.onSuccess(pullResult);我们进入pullCallback中:

 pullResult = DefaultMQPushConsumerImpl.this.pullAPIWrapper.processPullResult(pullRequest.getMessageQueue(), pullResult,
                        subscriptionData);

pullAPIWrapper.processPullResult是处理拉取到的消息进行解码成一条条消息,并且执行tag模式的消息过滤,并且执行hook操作并填充到MsgFoundList中,接下来按照正常流程分析,就是拉取到消息的情况

long prevRequestOffset = pullRequest.getNextOffset();
pullRequest.setNextOffset(pullResult.getNextBeginOffset());
...
if (pullResult.getMsgFoundList() == null || pullResult.getMsgFoundList().isEmpty()) {
    DefaultMQPushConsumerImpl.this.executePullRequestImmediately(pullRequest);
}

先跟新下一次拉取的偏移量,如果MsgFoundList为空,那么立即触发下一次拉取,为什么可能为空呢,因为有tag过滤,服务端只验证了tag的hashcode,为什么要采用这样的方式呢,还有个疑问就是,这个时候被过滤掉的消息怎么才能被其他消费者消费,因为broker端已经提交了消费进度。

boolean dispatchToConsume = processQueue.putMessage(pullResult.getMsgFoundList());
//消费消息服务提交
DefaultMQPushConsumerImpl.this.consumeMessageService.submitConsumeRequest(
    pullResult.getMsgFoundList(),
    processQueue,
    pullRequest.getMessageQueue(),
    dispatchToConsume);

将msgFoundList提交保存到processQueue中,承载的对象是msgTreeMap,processQueue中用到了读写锁,后面分析一下,然后将拉取到的消息提交到consumeMessageService线程中,这里将是消费消息的入口处,到这里消息的拉取就完成了,这次消息拉取完成后,pullRequest将会被重新放入pullrequestQueue中,再次进行消息的拉取。下面一张流程图就是消息拉取的整个过程

RocketMQ消息消费源码分析(一消费者的启动、消息拉取)_第2张图片

 

你可能感兴趣的:(RocketMQ)