kafka初探 版本0.10 java编程

之前一直有项目用到,不过我并不负责这一块,所以了解不多,这次趁机会学习下。
之前对kafka的了解其实仅限于知道它是一个分布式消息系统,这次详细了解了下,知道了一些关键概念(topic主题、broker服务、producers消息发布者、consumer消息订阅者消费者),具体网上一大堆,这里不赘述,直接开始代码。

1.引入包

    <dependency>
        <groupId>org.apache.kafkagroupId>
        <artifactId>kafka_2.10artifactId>
        <version>0.10.0.0version>
    dependency>

实际上我倒不是以上面方式引入的,因为使用kafka还是为了后面跟spark steaming集成,所以我是引入的spark-streaming-kafka,依赖包自然会被引入,需求相同的话可以像下面这样引入。

    <dependency>
        <groupId>org.apache.sparkgroupId>
        <artifactId>spark-streaming-kafka-0-10_2.11artifactId>
        <version>2.0.0version>
    dependency>

2.发布者类Producer

这里使用KafkaProducer类,官方已经不建议使用Producer类,实现一个线程类,进行消息发布,实际的代码其实很简单,不过本来也就是要一个demo。

import java.util.Properties;

import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerRecord;

public class UserKafkaProducer extends Thread
{
    private final KafkaProducer producer;
    private final String topic;
    private final Properties props = new Properties();
    public UserKafkaProducer(String topic)
    {
        props.put("metadata.broker.list", "master2:6667");
        props.put("bootstrap.servers", "master2:6667");
        props.put("acks", "all");
        props.put("retries", 0);
        props.put("batch.size", 16384);
        props.put("linger.ms", 1);
        props.put("buffer.memory", 33554432);
        props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        producer = new KafkaProducer(props);
        this.topic = topic;
    }
    @Override
    public void run() {
        int messageNo = 1;
        while (true)
        {
            String messageStr = new String("Message_" + messageNo);
            System.out.println("Send:" + messageStr);
            producer.send(new ProducerRecord(topic, messageStr));
            messageNo++;
            try {
                sleep(3000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
    }
}

3.消息消费者类Consumer

import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Properties;

import kafka.consumer.ConsumerConfig;
import kafka.javaapi.consumer.ConsumerConnector;
import kafka.consumer.ConsumerIterator;
import kafka.consumer.KafkaStream;

public class UserKafkaConsumer extends Thread
{
    private final ConsumerConnector consumer;
    private final String topic;
    public UserKafkaConsumer(String topic)
    {
        consumer = kafka.consumer.Consumer.createJavaConsumerConnector(
                createConsumerConfig());
        this.topic = topic;
    }
    private static ConsumerConfig createConsumerConfig()
    {
        Properties props = new Properties();
        props.put("zookeeper.connect", "master1:2181,master2:2181");
        props.put("group.id", "group1");
        props.put("zookeeper.session.timeout.ms", "40000");
        props.put("zookeeper.sync.time.ms", "200");
        props.put("auto.commit.interval.ms", "1000");
        return new ConsumerConfig(props);
    }
    @Override
    public void run() {
        Map topicCountMap = new HashMap();
        topicCountMap.put(topic, new Integer(1));
        Mapbyte[], byte[]>>> consumerMap = consumer.createMessageStreams(topicCountMap);
        KafkaStream<byte[], byte[]> stream = consumerMap.get(topic).get(0);
        ConsumerIterator<byte[], byte[]> it = stream.iterator();
        while (it.hasNext()) {
            System.out.println("receive:" + new String(it.next().message()));
            try {
                sleep(3000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
    }
}

4.简单示例

public static void main(String[] args)
    {
        UserKafkaProducer producerThread = new UserKafkaProducer(KafkaProperties.topic);
        producerThread.start();
        UserKafkaConsumer consumerThread = new UserKafkaConsumer(KafkaProperties.topic);
        consumerThread.start();
    }

运行即可。

你可能感兴趣的:(kafka初探 版本0.10 java编程)