写在前面:
读写锁也是分公平/非公平的,由于上一章已经讲了公平锁和非公平锁的区别,而且也说明了非公平锁使用率更高的原因,那么我们主要以介绍非公平锁实现逻辑为主
可以先告诉大家一个结论,这样方便理解:不同线程读读并存,读写互斥,写写互斥
读写锁的构造器很简单,就是先初始化一个公平/非公平锁,然后再根据这个锁构造读锁和写锁
public ReentrantReadWriteLock(boolean fair) {
sync = fair ? new FairSync() : new NonfairSync();
readerLock = new ReadLock(this);
writerLock = new WriteLock(this);
}
调用lock方法,它是acquire方法的封装
public void lock() {
sync.acquire(1);
}
public final void acquire(int arg) {
if (!tryAcquire(arg) &&
acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
}
首先调用tryAcquire方法
protected final boolean tryAcquire(int acquires) {
Thread current = Thread.currentThread();
int c = getState();
int w = exclusiveCount(c);
if (c != 0) {
// (Note: if c != 0 and w == 0 then shared count != 0)
if (w == 0 || current != getExclusiveOwnerThread())
return false;
if (w + exclusiveCount(acquires) > MAX_COUNT)
throw new Error("Maximum lock count exceeded");
// Reentrant acquire
setState(c + acquires);
return true;
}
if (writerShouldBlock() ||
!compareAndSetState(c, c + acquires))
return false;
setExclusiveOwnerThread(current);
return true;
}
前两步没什么可说的,获取当前线程并获取写锁状态
看第三步exclusiveCount,翻译过来是“独占计数”,意思就是加了独占锁的次数,这里介绍一下,ReentrantReadWriteLock是以2个16进制存储读写锁计数的,高16位存读,低16位存写,所以exclusiveCount是取低16位写的次数
static final int EXCLUSIVE_MASK = (1 << SHARED_SHIFT) - 1;
static int exclusiveCount(int c) {
return c & EXCLUSIVE_MASK; }
state不等于0时,说明锁被占用,进入条件判断
第一步:通过exclusiveCount获取加写锁的次数。加写锁的次数为0说明之前线程加的是读锁(state不为0但是取低16位为0,说明高16位不为0,高16位表示加读锁次数),如果前一个线程加的是读锁,或者前一个线程加的写锁但是跟当前线程不是一个线程,则获取锁失败;如果是同一个线程,符合可重入锁规则,就更新加锁次数,返回加锁成功
state为0时,说明还没有线程占用锁,所以直接跳过第一个if判断,进入writerShouldBlock
非公平锁的writerShouldBlock直接返回false,说明写锁不需要判断前面是否还有线程排队阻塞阻塞,可以直接进入compareAndSetState抢锁
static final class NonfairSync extends Sync {
private static final long serialVersionUID = -8159625535654395037L;
final boolean writerShouldBlock() {
return false; // writers can always barge
}
final boolean readerShouldBlock() {
return apparentlyFirstQueuedIsExclusive();
}
}
最后执行setExclusiveOwnerThread缓存当前拥有锁的线程
在获取锁失败的时候,将线程放入队列中,过程与ReetrantLock相同,此处省略
###2.3、释放写锁——unlock
释放写锁,调用unlock方法,它是release方法的封装
public void unlock() {
sync.release(1);
}
public final boolean release(int arg) {
if (tryRelease(arg)) {
Node h = head;
if (h != null && h.waitStatus != 0)
unparkSuccessor(h);
return true;
}
return false;
}
调用tryRelease方法尝试释放锁
首先isHeldExclusively校验请求解锁的当前线程是否为锁持有者
然后更新加锁次数,如果释放锁之后已经没有写锁了,还要把锁持有者置空
protected final boolean tryRelease(int releases) {
if (!isHeldExclusively())
throw new IllegalMonitorStateException();
int nextc = getState() - releases;
boolean free = exclusiveCount(nextc) == 0;
if (free)
setExclusiveOwnerThread(null);
setState(nextc);
return free;
}
protected final boolean isHeldExclusively() {
return getExclusiveOwnerThread() == Thread.currentThread();
}
释放锁成功的话,回到release方法,如果队列中还有线程再等待,还要调用unparkSuccessor主动唤醒一下,这部分逻辑和ReetrantLock类似,就略过了
获取读锁调用lock方法,它是acquireShared方法的封装
public void lock() {
sync.acquireShared(1);
}
public final void acquireShared(int arg) {
if (tryAcquireShared(arg) < 0)
doAcquireShared(arg);
}
首先调用tryAcquireShared
当加了写锁(exclusiveCount© != 0)并且锁持有者的不是当前线程,返回-1
protected final int tryAcquireShared(int unused) {
Thread current = Thread.currentThread();
int c = getState();
if (exclusiveCount(c) != 0 &&
getExclusiveOwnerThread() != current)
return -1;
int r = sharedCount(c);
if (!readerShouldBlock() &&
r < MAX_COUNT &&
compareAndSetState(c, c + SHARED_UNIT)) {
if (r == 0) {
firstReader = current;
firstReaderHoldCount = 1;
} else if (firstReader == current) {
firstReaderHoldCount++;
} else {
HoldCounter rh = cachedHoldCounter;
if (rh == null || rh.tid != getThreadId(current))
cachedHoldCounter = rh = readHolds.get();
else if (rh.count == 0)
readHolds.set(rh);
rh.count++;
}
return 1;
}
return fullTryAcquireShared(current);
}
否则通过sharedCount取高16位加读锁的次数
接着调用readerShouldBlock,它是apparentlyFirstQueuedIsExclusive方法的封装
这个方法达到了调高写锁优先级的效果(判断读锁是否需要阻塞),nextWaiter表示下个节点是否可以与该节点共享,是在尝试获取锁失败时初始化的。当等待队列头节点的nextWaiter是EXCLUSIVE(null)而不是SHARD时,说明队列中的第一个节点正准备获取写锁,此时到来的获取读锁的线程是不能跟写锁抢锁的
static final class NonfairSync extends Sync {
private static final long serialVersionUID = -8159625535654395037L;
final boolean writerShouldBlock() {
return false; // writers can always barge
}
final boolean readerShouldBlock() {
return apparentlyFirstQueuedIsExclusive();
}
}
final boolean apparentlyFirstQueuedIsExclusive() {
Node h, s;
return (h = head) != null &&
(s = h.next) != null &&
!s.isShared() &&
s.thread != null;
}
final boolean isShared() {
return nextWaiter == SHARED;
}
static final class Node {
/** Marker to indicate a node is waiting in shared mode */
static final Node SHARED = new Node();
/** Marker to indicate a node is waiting in exclusive mode */
static final Node EXCLUSIVE = null;
}
读锁抢到了就返回成功,失败了就进入fullTryAcquireShared
这个方法一上来就是一个for死循环,当满足获取到了读锁/获取不到读锁的结果就会返回
那我们按代码顺序捋捋这几种返回情况:
1、加写锁的线程不是自己,返回加锁失败
2、加写锁的线程就是自己,肯定也允许当前线程加读锁(锁降级),就CAS尝试更新一下加读锁的次数,更新成功了就返回加锁成功,更新失败了就进入下一次for循环
此处补充一下锁降级的作用:一个线程执行完共享资源的更新后,需要先加读锁阻塞其他线程(防止其他线程对共享资源更新,对当前线程使用共享资源有影响),再释放写锁(防止其他线程获取读锁时阻塞,提高响应),当前线程执行完使用逻辑后再释放读锁
3、如果判断当前没加写锁,有可能就有后面的线程尝试获取写锁并先于该线程进入等待队列,所以要用readerShouldBlock提高写锁的优先级
如果现在拥有读锁的线程就是自己,那就直接执行后面的代码,读重入锁次数加一
如果现在拥有读锁的线程不是自己,那就获取成功,同时更新缓存(最后一次成功获取读锁的线程)
final int fullTryAcquireShared(Thread current) {
HoldCounter rh = null;
for (;;) {
int c = getState();
//1
if (exclusiveCount(c) != 0) {
if (getExclusiveOwnerThread() != current)
return -1;
} else if (readerShouldBlock()) {
if (firstReader == current) {
} else {
if (rh == null) {
rh = cachedHoldCounter;
if (rh == null || rh.tid != getThreadId(current)) {
rh = readHolds.get();
if (rh.count == 0)
readHolds.remove();
}
}
if (rh.count == 0)
return -1;
}
}
if (sharedCount(c) == MAX_COUNT)
throw new Error("Maximum lock count exceeded");
//2
if (compareAndSetState(c, c + SHARED_UNIT)) {
if (sharedCount(c) == 0) {
firstReader = current;
firstReaderHoldCount = 1;
} else if (firstReader == current) {
firstReaderHoldCount++;
} else {
if (rh == null)
rh = cachedHoldCounter;
if (rh == null || rh.tid != getThreadId(current))
rh = readHolds.get();
else if (rh.count == 0)
readHolds.set(rh);
rh.count++;
cachedHoldCounter = rh; // cache for release
}
return 1;
}
}
}
补充:cachedHoldCounter
HoldCounter是一个计数器,用来缓存当前线程的id以及当前线程获取读锁的次数
cachedHoldCounter作为共享变量,用来缓存最近一次成功获取读锁的线程对应的计数器。好处是在部分情况下提高性能,避免每次都从ThreadLocal中取
private transient HoldCounter cachedHoldCounter;
static final class HoldCounter {
int count = 0;
// Use id, not reference, to avoid garbage retention
final long tid = getThreadId(Thread.currentThread());
}
补充:readHolds
继承了ThreadLocal类,主要是用来缓存每个线程对应的HoldCounter
private transient ThreadLocalHoldCounter readHolds;
static final class ThreadLocalHoldCounter
extends ThreadLocal<HoldCounter> {
public HoldCounter initialValue() {
return new HoldCounter();
}
}
回到tryAcquire方法,如果acquireShared方法返回-1尝试获取读锁失败,就进入doAcquireShared,方法跟ReetrantLock类似,不再赘述
调用unlock方法,它是releaseShared方法的封装
public void unlock() {
sync.releaseShared(1);
}
public final boolean releaseShared(int arg) {
if (tryReleaseShared(arg)) {
doReleaseShared();
return true;
}
return false;
}
首先调用tryReleaseShared方法
如果队列中获取读锁的第一个线程(firstReader)就是自己,说明是重入读锁,直接维护读锁的首个线程和计数器,计数器-1,降到1说明只有一个读锁了,就把firstReader清掉
如果第一个加读锁的线程不是自己,那自己肯定不能释放别的线程的锁,那我们就只能维护当前读锁的计数器,改减减,该移除移除
最后维护state状态,读锁次数-1,注意一点,自己的读锁释放完了不是真正的释放读锁,只有释放自己的读锁之后读锁空闲时才能叫真正的释放读锁,所以在自己的读锁释放完了之后,如果发现还有读锁,返回释放锁失败
protected final boolean tryReleaseShared(int unused) {
Thread current = Thread.currentThread();
if (firstReader == current) {
// assert firstReaderHoldCount > 0;
if (firstReaderHoldCount == 1)
firstReader = null;
else
firstReaderHoldCount--;
} else {
HoldCounter rh = cachedHoldCounter;
if (rh == null || rh.tid != getThreadId(current))
rh = readHolds.get();
int count = rh.count;
if (count <= 1) {
readHolds.remove();
if (count <= 0)
throw unmatchedUnlockException();
}
--rh.count;
}
for (;;) {
int c = getState();
int nextc = c - SHARED_UNIT;
if (compareAndSetState(c, nextc))
// Releasing the read lock has no effect on readers,
// but it may allow waiting writers to proceed if
// both read and write locks are now free.
return nextc == 0;
}
}
如果尝试释放锁成功了,则进入doReleaseShared方法,维护队列中节点的状态
private void doReleaseShared() {
for (;;) {
Node h = head;
if (h != null && h != tail) {
int ws = h.waitStatus;
if (ws == Node.SIGNAL) {
if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))
continue; // loop to recheck cases
unparkSuccessor(h);
}
else if (ws == 0 &&
!compareAndSetWaitStatus(h, 0, Node.PROPAGATE))
continue; // loop on failed CAS
}
if (h == head) // loop if head changed
break;
}
}
这篇博客到此就结束了,如果我有写的不对的地方,或者你有什么不懂得地方,欢迎发表评论随时交流,喜欢的点个赞