看了pytorch官网parameters和Module部分。做个部分测试并记录。详细建议去官网查询
是Tensor的子类。
唯一区别:在和Module一起使用时。当parameter赋值给module的属性时,会自动将parameter加入到模型的参数列表中。而tensor不会。
是所有神经网络模块的基类。
Module可以包含其他的Module模块,支持用树结构来嵌入他们。
可以直接将模块赋值给Module的普通属性
"""可以在__init__构建函数中添加模块"""
class NeuralNet(nn.Module):
def __init__(self):
super(NeuralNet,self).__init__()
linear = nn.Linear(512,3)
self.linear1 = linear
self.linear2 = linear
self.test1 = nn.Parameter(torch.tensor([1,2,3],dtype=torch.float),requires_grad=True)
self.test2 = torch.tensor([4,5,6],dtype=torch.float)
self.add_module('linear3',nn.Linear(512,4)) #add_module方法等同于直接给model的属性赋值。
model.children(): 返回模型的所有子模块的迭代器
model.modules():返回模型的所有模块(不仅仅是子模块,还包含当前模块)
model.named_children():返回当前子模块的迭代器。名字:模块
model.named_modules():
测试代码:
model = NeuralNet()
print("\n*****children ****\n")
for i in model.children():
print(i)
print("\n*****modules ****\n")
for i in model.modules():
print(i)
print("\n*****named children ****\n")
for i in model.named_children():
print(i)
print("\n*****named modules ****\n")
for i in model.named_modules():
print(i)
测试结果:
*****children ****
Linear(in_features=512, out_features=3, bias=True)
Linear(in_features=512, out_features=4, bias=True)
*****modules ****
NeuralNet(
(linear1): Linear(in_features=512, out_features=3, bias=True)
(linear2): Linear(in_features=512, out_features=3, bias=True)
(linear3): Linear(in_features=512, out_features=4, bias=True)
)
Linear(in_features=512, out_features=3, bias=True)
Linear(in_features=512, out_features=4, bias=True)
*****named children ****
('linear1', Linear(in_features=512, out_features=3, bias=True))
('linear3', Linear(in_features=512, out_features=4, bias=True))
*****named modules ****
('', NeuralNet(
(linear1): Linear(in_features=512, out_features=3, bias=True)
(linear2): Linear(in_features=512, out_features=3, bias=True)
(linear3): Linear(in_features=512, out_features=4, bias=True)
))
('linear1', Linear(in_features=512, out_features=3, bias=True))
('linear3', Linear(in_features=512, out_features=4, bias=True))
model.buffers:返回模型所有缓存参数的迭代器(缓存参数:不需要训练的),
model.parameters:返回模型所有参数的迭代器
module.named_buffers:
module.named_parameters:
module.parameters常和optimizer()一起使用,来制定需要优化的参数。
测试代码:
print("\n*****buffers ****\n")
for i in model.buffers():
print(i)
print("\n*****named buffers ****\n")
for i in model.named_buffers():
print(i)
print("\n*****parameters ****\n")
for i in model.parameters():
print(i)
print("\n*****named parameters ****\n")
for i in model.named_parameters():
print(i)
测试结果:
*****buffers ****
*****named buffers ****
*****parameters ****
Parameter containing:
tensor([1., 2., 3.], requires_grad=True)
Parameter containing:
tensor([[-0.0403, -0.0027, 0.0287, ..., -0.0113, -0.0403, -0.0343],
[-0.0389, -0.0086, -0.0035, ..., 0.0246, -0.0127, -0.0313],
[ 0.0275, -0.0339, -0.0109, ..., 0.0304, 0.0250, 0.0273]],
requires_grad=True)
Parameter containing:
tensor([-0.0349, 0.0117, -0.0313], requires_grad=True)
Parameter containing:
tensor([[-0.0166, -0.0328, 0.0354, ..., -0.0193, -0.0410, 0.0034],
[-0.0350, -0.0207, -0.0372, ..., -0.0130, -0.0279, 0.0041],
[-0.0320, 0.0410, 0.0157, ..., -0.0358, 0.0145, 0.0272],
[ 0.0214, 0.0276, 0.0103, ..., 0.0165, -0.0265, -0.0109]],
requires_grad=True)
Parameter containing:
tensor([ 0.0035, 0.0182, -0.0215, 0.0390], requires_grad=True)
*****named parameters ****
('test1', Parameter containing:
tensor([1., 2., 3.], requires_grad=True))
('linear1.weight', Parameter containing:
tensor([[-0.0403, -0.0027, 0.0287, ..., -0.0113, -0.0403, -0.0343],
[-0.0389, -0.0086, -0.0035, ..., 0.0246, -0.0127, -0.0313],
[ 0.0275, -0.0339, -0.0109, ..., 0.0304, 0.0250, 0.0273]],
requires_grad=True))
('linear1.bias', Parameter containing:
tensor([-0.0349, 0.0117, -0.0313], requires_grad=True))
('linear3.weight', Parameter containing:
tensor([[-0.0166, -0.0328, 0.0354, ..., -0.0193, -0.0410, 0.0034],
[-0.0350, -0.0207, -0.0372, ..., -0.0130, -0.0279, 0.0041],
[-0.0320, 0.0410, 0.0157, ..., -0.0358, 0.0145, 0.0272],
[ 0.0214, 0.0276, 0.0103, ..., 0.0165, -0.0265, -0.0109]],
requires_grad=True))
('linear3.bias', Parameter containing:
tensor([ 0.0035, 0.0182, -0.0215, 0.0390], requires_grad=True))
注意parameters和tensor的区别:parameters被自动加入到模型的参数列表中。而tensor没有。
model.cpu():所有模型parameters和buffers移到cpu
model.cuda():所有模型parameters和buffers移到gpu
model.train():设置模型到训练模式。只对部分模型有影响(包含Dropout,BatchNorm)。
model.eval():设置模型到测试模式。